pmaitra commited on
Commit
936060b
1 Parent(s): 82677ef

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -1
README.md CHANGED
@@ -49,12 +49,29 @@ BioBERT based NER model for medical symptoms
49
 
50
 
51
 
52
- The model was trained on the combined maccrobat and i2c2 dataset and is based on biobert. If you use the model kindly cite the paper below:
 
 
53
 
54
  <em>
55
  <b>Developing a BioBERT-based Natural Language Processing Algorithm for Acute Myeloid Leukemia Symptoms Identification from Clinical Notes - Sena Chae , Pratik Maitra , Padmini Srinivasan</b>
56
  </em>
57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  ### Accuracy
59
 
60
  | Type | Score |
 
49
 
50
 
51
 
52
+ <em> Model Description </em>
53
+
54
+ The model was trained on a combined maccrobat and i2c2 dataset and is based on biobert. If you use this model kindly cite the paper below:
55
 
56
  <em>
57
  <b>Developing a BioBERT-based Natural Language Processing Algorithm for Acute Myeloid Leukemia Symptoms Identification from Clinical Notes - Sena Chae , Pratik Maitra , Padmini Srinivasan</b>
58
  </em>
59
 
60
+ <em> How to use the Model </em>
61
+
62
+ <div class="wrapper">
63
+ <span class="inner">
64
+
65
+ from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
66
+
67
+ tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
68
+ model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
69
+
70
+ pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
71
+ pipe("""The patient reported no recurrence of palpitations at follow-up 6 months after the ablation.""")
72
+
73
+ </span>
74
+ </div>
75
  ### Accuracy
76
 
77
  | Type | Score |