Update README.md
Browse files
README.md
CHANGED
@@ -49,12 +49,29 @@ BioBERT based NER model for medical symptoms
|
|
49 |
|
50 |
|
51 |
|
52 |
-
|
|
|
|
|
53 |
|
54 |
<em>
|
55 |
<b>Developing a BioBERT-based Natural Language Processing Algorithm for Acute Myeloid Leukemia Symptoms Identification from Clinical Notes - Sena Chae , Pratik Maitra , Padmini Srinivasan</b>
|
56 |
</em>
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
### Accuracy
|
59 |
|
60 |
| Type | Score |
|
|
|
49 |
|
50 |
|
51 |
|
52 |
+
<em> Model Description </em>
|
53 |
+
|
54 |
+
The model was trained on a combined maccrobat and i2c2 dataset and is based on biobert. If you use this model kindly cite the paper below:
|
55 |
|
56 |
<em>
|
57 |
<b>Developing a BioBERT-based Natural Language Processing Algorithm for Acute Myeloid Leukemia Symptoms Identification from Clinical Notes - Sena Chae , Pratik Maitra , Padmini Srinivasan</b>
|
58 |
</em>
|
59 |
|
60 |
+
<em> How to use the Model </em>
|
61 |
+
|
62 |
+
<div class="wrapper">
|
63 |
+
<span class="inner">
|
64 |
+
|
65 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
|
66 |
+
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
|
68 |
+
model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
69 |
+
|
70 |
+
pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
|
71 |
+
pipe("""The patient reported no recurrence of palpitations at follow-up 6 months after the ablation.""")
|
72 |
+
|
73 |
+
</span>
|
74 |
+
</div>
|
75 |
### Accuracy
|
76 |
|
77 |
| Type | Score |
|