The pretrained model (pruned_transducer_stateless4) in https://github.com/k2-fsa/icefall/pull/380

training

#!/usr/bin/env bash

set -x

K2_ROOT=/path/to/k2
ICEFALL=/path/to/icefall

export PYTHONPATH=$K2_ROOT/k2/python:$PYTHONPATH
export PYTHONPATH=$K2_ROOT/build/lib:$PYTHONPATH
export PYTHONPATH=$ICEFALL:$PYTHONPATH

export CUDA_VISIBLE_DEVICES="0,1,2,3"

./pruned_transducer_stateless4/train.py \
  --exp-dir pruned_transducer_stateless4/exp \
  --full-libri 1 \
  --dynamic-chunk-training 1 \
  --short-chunk-size 32 \
  --num-left-chunks 4 \
  --causal-convolution 1 \
  --max-duration 300 \
  --world-size 4 \
  --start-epoch 1 \
  --num-epochs 30

decoding

simulate streaming

#!/usr/bin/env bash                                                                                                                                           
                                                                                                                                                              
set -x                                                                                                                                                        
                                                                                                                                                              
K2_ROOT=/path/to/k2
ICEFALL=/path/to/icefall                                                                                                             
                                                                                                                                                              
export PYTHONPATH=$K2_ROOT/k2/python:$PYTHONPATH                                                                                                              
export PYTHONPATH=$K2_ROOT/build/lib:$PYTHONPATH                                                                                                              
export PYTHONPATH=$ICEFALL:$PYTHONPATH                                                                                                                        
                                                                                                                                                              
export CUDA_VISIBLE_DEVICES="0"                                                                                                                               
                                                                                                                                                              
for size in 1 2 4 8 16 32; do                                                                                                                                
  for left in 32 64 -1; do                                                                                                                                    
    ./pruned_transducer_stateless4/decode.py \                                                                                                                
            --simulate-streaming 1 \                                                                                                                          
            --decode-chunk-size ${size} \
            --left-context ${left} \
            --causal-convolution 1 \
            --use-averaged-model 1 \
            --epoch 29 \
            --avg 6 \
            --exp-dir ./pruned_transducer_stateless4/exp \
            --max-sym-per-frame 1 \
            --max-duration 1000 \
            --decoding-method greedy_search
  done
done

streaming

#!/usr/bin/env bash                                                                                                                                           
                                                                                                                                                              
set -x                                                                                                                                                        
                                                                                                                                                              
K2_ROOT=/path/to/k2
ICEFALL=/path/to/icefall                                                                                                              
                                                                                                                                                              
export PYTHONPATH=$K2_ROOT/k2/python:$PYTHONPATH                                                                                                              
export PYTHONPATH=$K2_ROOT/build/lib:$PYTHONPATH                                                                                                              
export PYTHONPATH=$ICEFALL:$PYTHONPATH                                                                                                                        
                                                                                                                                                              
export CUDA_VISIBLE_DEVICES="0"                                                                                                                               
            
#left_context=32                                                                                                                                               
#chunk_size=8
                                                                                                                                                                                                                                                                                                  
left_context=64                                                                                                                                               
chunk_size=16

for right in 0 2 4 8; do
  ./pruned_transducer_stateless4/streaming_decode.py \
    --left-context ${left_context} \
    --decode-chunk-size ${chunk_size} \
    --right-context ${right} \
    --exp-dir ./pruned_transducer_stateless4/exp \
    --use-averaged-model 1 \
    --epoch 29 \
    --avg 6 \
    --num-decode-streams 1000
done

export

for pretrained.pt

python pruned_transducer_stateless4/export.py \
    --exp-dir ./pruned_transducer_stateless4/exp \
    --epoch 29 \
    --avg 6 \
    --streaming-model 1 \
    --causal-convolution 1

for cpu_jit.pt

python pruned_transducer_stateless4/export.py \
    --exp-dir ./pruned_transducer_stateless4/exp \
    --epoch 29 \
    --avg 6 \
    --streaming-model 1 \
    --causal-convolution 1 \
    --jit 1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.