pknayak's picture
End of training
53d07dc verified
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: pk-distilbert-fine-tuned
    results: []

pk-distilbert-fine-tuned

This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5887
  • Precision: 0.1857
  • Recall: 0.4310
  • F1: 0.2596
  • Accuracy: 0.4310

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.02
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0 1.0 1870 1.5887 0.1857 0.4310 0.2596 0.4310
0.0 2.0 3740 1.5887 0.1857 0.4310 0.2596 0.4310
0.0 3.0 5610 1.5887 0.1857 0.4310 0.2596 0.4310

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1