|
--- |
|
library_name: peft |
|
license: llama3.2 |
|
base_model: meta-llama/Llama-3.2-1B |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- scitldr |
|
model-index: |
|
- name: Llama-3.2-1B-Summarization-LoRa |
|
results: [] |
|
pipeline_tag: summarization |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Llama-3.2-1B-Summarization-LoRa |
|
|
|
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on the scitldr dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.5661 |
|
|
|
## Model description |
|
|
|
Fine-tuned (LoRa) Version of meta-llama/Llama-3.2-1B for Summarization of scientific documents |
|
|
|
## Intended uses & limitations |
|
|
|
Summarization |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2 |
|
- num_epochs: 2 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 2.45 | 0.2008 | 200 | 2.5272 | |
|
| 2.4331 | 0.4016 | 400 | 2.5327 | |
|
| 2.4369 | 0.6024 | 600 | 2.5285 | |
|
| 2.4315 | 0.8032 | 800 | 2.5238 | |
|
| 2.4303 | 1.0040 | 1000 | 2.5181 | |
|
| 2.1077 | 1.2048 | 1200 | 2.5525 | |
|
| 2.0951 | 1.4056 | 1400 | 2.5611 | |
|
| 2.0738 | 1.6064 | 1600 | 2.5591 | |
|
| 2.0539 | 1.8072 | 1800 | 2.5661 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.13.2 |
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |