bit-50
This model is a fine-tuned version of google/bit-50 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 7122385408.0
- Accuracy: 0.085
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
5528748032.0 | 1.0 | 50 | 7122386944.0 | 0.085 |
5155133849.6 | 2.0 | 100 | 7122386944.0 | 0.085 |
5068722995.2 | 3.0 | 150 | 7122386944.0 | 0.085 |
5613660569.6 | 4.0 | 200 | 7122385408.0 | 0.085 |
7499937382.4 | 5.0 | 250 | 7122385408.0 | 0.085 |
5806654259.2 | 6.0 | 300 | 7122385408.0 | 0.085 |
5483250483.2 | 7.0 | 350 | 7122385408.0 | 0.085 |
6852667392.0 | 8.0 | 400 | 7122385408.0 | 0.085 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 140
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for pk3388/bit-50
Base model
google/bit-50