bert-base-banking77-pt2
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3111
- F1: 0.9275
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
1.0958 | 1.0 | 626 | 0.7854 | 0.8363 |
0.3958 | 2.0 | 1252 | 0.3744 | 0.9168 |
0.1894 | 3.0 | 1878 | 0.3111 | 0.9275 |
Framework versions
- Transformers 4.27.1
- Pytorch 2.4.1+cu121
- Datasets 2.9.0
- Tokenizers 0.13.3
How to use
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
ckpt = 'pistachio7/bert-base-banking77-pt2'
tokenizer = AutoTokenizer.from_pretrained(ckpt)
model = AutoModelForSequenceClassification.from_pretrained(ckpt)
classifier = pipeline('text-classification', tokenizer=tokenizer, model=model)
classifier('What is the base of the exchange rates?')
# Output: [{'label': 'exchange_rate', 'score': 0.9961327314376831}]
- Downloads last month
- 9
Model tree for pistachio7/bert-base-banking77-pt2
Base model
google-bert/bert-base-uncased