File size: 8,382 Bytes
8f17ae9 69381b6 e4f052b 8f17ae9 cdb9456 8f17ae9 466099f 8f17ae9 5517248 8f17ae9 dbd8bba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
---
license: apache-2.0
language:
- pl
base_model:
- CYFRAGOVPL/PLLuM-8x7B-chat
tags:
- polish
- llm
- quantized
- gguf
- mixtral
- llama
library_name: transformers
pipeline_tag: text-generation
---
<p align="center">
<img src="https://i.imgur.com/e9226KU.png">
</p>
# PLLuM-8x7B-chat GGUF (Unofficial)
This repository contains quantized versions of the [PLLuM-8x7B-chat](https://huggingface.co/CYFRAGOVPL/PLLuM-8x7B-chat) model in GGUF format, optimized for local execution using [llama.cpp](https://github.com/ggerganov/llama.cpp) and related tools. Quantization allows for a significant reduction in model size while maintaining good quality of generated text, enabling it to run on standard hardware.
This is the only repository that contains the PLLuM-8x7B-chat model in both **reference (F16)** and **(BF16)** versions, as well as **(IQ3_S)** quantization.
The GGUF version allows you to run, among other things, in [LM Studio](https://lmstudio.ai/) or [Ollama](https://ollama.com/).
## Available models
| Filename | Size | Quantization type | Recommended hardware | Usage |
|-------------|---------|-----------------|-----------------|--------------|
| [PLLuM-8x7B-chat-gguf-q2_k.gguf](https://huggingface.co/piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF/blob/main/PLLuM-8x7B-chat-gguf-q2_k.gguf) | 17 GB | Q2_K | CPU, min. 20 GB RAM | Very weak computers, worst quality |
| [**PLLuM-8x7B-chat-gguf-iq3_s.gguf**](https://huggingface.co/piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF/blob/main/PLLuM-8x7B-chat-gguf-iq3_s.gguf) | 20.4 GB | IQ3_S | CPU, min. 24GB RAM | Running on weaker computers with acceptable quality |
| [PLLuM-8x7B-chat-gguf-q3_k_m.gguf](https://huggingface.co/piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF/blob/main/PLLuM-8x7B-chat-gguf-q3_k_m.gguf) | 22.5 GB | Q3_K_M | CPU, min. 26GB RAM | Good compromise between size and quality |
| [PLLuM-8x7B-chat-gguf-q4_k_m.gguf](https://huggingface.co/piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF/blob/main/PLLuM-8x7B-chat-gguf-q4_k_m.gguf) | 28.4 GB | Q4_K_M | CPU/GPU, min. 32GB RAM | Recommended for most applications |
| [PLLuM-8x7B-chat-gguf-q5_k_m.gguf](https://huggingface.co/piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF/blob/main/PLLuM-8x7B-chat-gguf-q5_k_m.gguf) | 33.2 GB | Q5_K_M | CPU/GPU, min. 40GB RAM | High quality with reasonable size |
| [PLLuM-8x7B-chat-gguf-q8_0.gguf](https://huggingface.co/piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF/blob/main/PLLuM-8x7B-chat-gguf-q8_0.gguf) | 49.6 GB | Q8_0 | GPU, min. 52GB RAM | Highest quality, close to original |
| [**PLLuM-8x7B-chat-gguf-F16**](https://huggingface.co/piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF/tree/main/PLLuM-8x7B-chat-gguf-F16) | ~85 GB | F16 | GPU, min. 85GB VRAM | Reference model without quantization |
| [**PLLuM-8x7B-chat-gguf-bf16**](https://huggingface.co/piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF/tree/main/PLLuM-8x7B-chat-gguf-bf16) | ~85 GB | BF16 | GPU, min. 85GB VRAM | Alternative full precision format |
## What is quantization?
Quantization is the process of reducing the precision of model weights, which decreases memory requirements while maintaining acceptable quality of generated text. The GGUF (GPT-Generated Unified Format) format is the successor to the GGML format, which enables efficient running of large language models on consumer hardware.
## Which model to choose?
- **Q2_K, IQ3_S and Q3_K_M**: The smallest versions of the model, ideal when memory savings are a priority
- **Q4_K_M**: Recommended for most applications - good balance between quality and size
- **Q5_K_M**: Choose when you care about better quality and have the appropriate amount of memory
- **Q8_0**: Highest quality on GPU, smallest quality decrease compared to the original
- **F16/BF16**: Full precision, reference versions without quantization
# Downloading the model using huggingface-cli
<details>
<summary>Click to see download instructions</summary>
First, make sure you have the huggingface-cli tool installed:
```bash
pip install -U "huggingface_hub[cli]"
```
### Downloading smaller models
To download a specific model smaller than 50GB (e.g., q4_k_m):
```bash
huggingface-cli download piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF --include "PLLuM-8x7B-chat-gguf-q4_k_m.gguf" --local-dir ./
```
You can also download other quantizations by changing the filename:
```bash
# For q3_k_m version (22.5 GB)
huggingface-cli download piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF --include "PLLuM-8x7B-chat-gguf-q3_k_m.gguf" --local-dir ./
# For iq3_s version (20.4 GB)
huggingface-cli download piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF --include "PLLuM-8x7B-chat-gguf-iq3_s.gguf" --local-dir ./
# For q5_k_m version (33.2 GB)
huggingface-cli download piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF --include "PLLuM-8x7B-chat-gguf-q5_k_m.gguf" --local-dir ./
```
### Downloading larger models (split into parts)
For large models, such as F16 or bf16, files are split into smaller parts. To download all parts to a local folder:
```bash
# For F16 version (~85 GB)
huggingface-cli download piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF --include "PLLuM-8x7B-chat-gguf-F16/*" --local-dir ./F16/
# For bf16 version (~85 GB)
huggingface-cli download piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF --include "PLLuM-8x7B-chat-gguf-bf16/*" --local-dir ./bf16/
```
### Faster downloads with hf_transfer
To significantly speed up downloading (up to 1GB/s), you can use the hf_transfer library:
```bash
# Install hf_transfer
pip install hf_transfer
# Download with hf_transfer enabled (much faster)
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF --include "PLLuM-8x7B-chat-gguf-q4_k_m.gguf" --local-dir ./
```
### Joining split files after downloading
If you downloaded a split model, you can join it using:
```bash
# On Linux/Mac systems
cat PLLuM-8x7B-chat-gguf-F16.part-* > PLLuM-8x7B-chat-gguf-F16.gguf
# On Windows systems
copy /b PLLuM-8x7B-chat-gguf-F16.part-* PLLuM-8x7B-chat-gguf-F16.gguf
```
</details>
## How to run the model
### Using llama.cpp
In these examples, we will use the PLLuM model from our unofficial repository. You can download your preferred quantization from the available models table above.
Once downloaded, place your model in the `models` directory.
#### Unix-based systems (Linux, macOS, etc.):
Input prompt (One-and-done)
```bash
./llama-cli -m models/PLLuM-8x7B-chat-gguf-q4_k_m.gguf --prompt "Pytanie: Jakie są największe miasta w Polsce? Odpowiedź:"
```
#### Windows:
Input prompt (One-and-done)
```bash
./llama-cli.exe -m models\PLLuM-8x7B-chat-gguf-q4_k_m.gguf --prompt "Pytanie: Jakie są największe miasta w Polsce? Odpowiedź:"
```
For detailed and up-to-date information, please refer to the official [llama.cpp documentation](https://github.com/ggml-org/llama.cpp/blob/master/examples/main/README.md).
### Using text-generation-webui
```bash
# Install text-generation-webui
git clone https://github.com/oobabooga/text-generation-webui.git
cd text-generation-webui
pip install -r requirements.txt
# Run the server with the selected model
python server.py --model path/to/PLLuM-8x7B-chat-gguf-q4_k_m.gguf
```
### Using python and llama-cpp-python
```python
from llama_cpp import Llama
# Load the model
llm = Llama(
model_path="path/to/PLLuM-8x7B-chat-gguf-q4_k_m.gguf",
n_ctx=4096, # Context size
n_threads=8, # Number of CPU threads
n_batch=512 # Batch size
)
# Example usage
prompt = "Pytanie: Jakie są najciekawsze zabytki w Krakowie? Odpowiedź:"
output = llm(
prompt,
max_tokens=512,
temperature=0.7,
top_p=0.95
)
print(output["choices"][0]["text"])
```
## About the PLLuM model
PLLuM (Polish Large Language Model) is an advanced family of Polish language models developed by the Polish Ministry of Digital Affairs. This version of the model (8x7B-chat) has been optimized for conversations (chat).
### Model capabilities:
- Generating text in Polish
- Answering questions
- Summarizing texts
- Creating content
- Translation
- Explaining concepts
- Conducting conversations
## License
The base PLLuM 8x7B-chat model is distributed under the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0.txt). Quantized versions are subject to the same license.
## Authors
The author of the repository and quantization is [Piotr Bednarski](https://github.com/piotrmaciejbednarski) |