PLLuM-8x7B-chat GGUF (Unofficial)
This repository contains quantized versions of the PLLuM-8x7B-chat model in GGUF format, optimized for local execution using llama.cpp and related tools. Quantization allows for a significant reduction in model size while maintaining good quality of generated text, enabling it to run on standard hardware.
This is the only repository that contains the PLLuM-8x7B-chat model in both reference (F16) and (BF16) versions, as well as (IQ3_S) quantization.
The GGUF version allows you to run, among other things, in LM Studio or Ollama.
Available models
Filename | Size | Quantization type | Recommended hardware | Usage |
---|---|---|---|---|
PLLuM-8x7B-chat-gguf-q2_k.gguf | 17 GB | Q2_K | CPU, min. 20 GB RAM | Very weak computers, worst quality |
PLLuM-8x7B-chat-gguf-iq3_s.gguf | 20.4 GB | IQ3_S | CPU, min. 24GB RAM | Running on weaker computers with acceptable quality |
PLLuM-8x7B-chat-gguf-q3_k_m.gguf | 22.5 GB | Q3_K_M | CPU, min. 26GB RAM | Good compromise between size and quality |
PLLuM-8x7B-chat-gguf-q4_k_m.gguf | 28.4 GB | Q4_K_M | CPU/GPU, min. 32GB RAM | Recommended for most applications |
PLLuM-8x7B-chat-gguf-q5_k_m.gguf | 33.2 GB | Q5_K_M | CPU/GPU, min. 40GB RAM | High quality with reasonable size |
PLLuM-8x7B-chat-gguf-q8_0.gguf | 49.6 GB | Q8_0 | GPU, min. 52GB RAM | Highest quality, close to original |
PLLuM-8x7B-chat-gguf-F16 | ~85 GB | F16 | GPU, min. 85GB VRAM | Reference model without quantization |
PLLuM-8x7B-chat-gguf-bf16 | ~85 GB | BF16 | GPU, min. 85GB VRAM | Alternative full precision format |
What is quantization?
Quantization is the process of reducing the precision of model weights, which decreases memory requirements while maintaining acceptable quality of generated text. The GGUF (GPT-Generated Unified Format) format is the successor to the GGML format, which enables efficient running of large language models on consumer hardware.
Which model to choose?
- Q2_K, IQ3_S and Q3_K_M: The smallest versions of the model, ideal when memory savings are a priority
- Q4_K_M: Recommended for most applications - good balance between quality and size
- Q5_K_M: Choose when you care about better quality and have the appropriate amount of memory
- Q8_0: Highest quality on GPU, smallest quality decrease compared to the original
- F16/BF16: Full precision, reference versions without quantization
Downloading the model using huggingface-cli
Click to see download instructions
First, make sure you have the huggingface-cli tool installed:
pip install -U "huggingface_hub[cli]"
Downloading smaller models
To download a specific model smaller than 50GB (e.g., q4_k_m):
huggingface-cli download piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF --include "PLLuM-8x7B-chat-gguf-q4_k_m.gguf" --local-dir ./
You can also download other quantizations by changing the filename:
# For q3_k_m version (22.5 GB)
huggingface-cli download piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF --include "PLLuM-8x7B-chat-gguf-q3_k_m.gguf" --local-dir ./
# For iq3_s version (20.4 GB)
huggingface-cli download piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF --include "PLLuM-8x7B-chat-gguf-iq3_s.gguf" --local-dir ./
# For q5_k_m version (33.2 GB)
huggingface-cli download piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF --include "PLLuM-8x7B-chat-gguf-q5_k_m.gguf" --local-dir ./
Downloading larger models (split into parts)
For large models, such as F16 or bf16, files are split into smaller parts. To download all parts to a local folder:
# For F16 version (~85 GB)
huggingface-cli download piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF --include "PLLuM-8x7B-chat-gguf-F16/*" --local-dir ./F16/
# For bf16 version (~85 GB)
huggingface-cli download piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF --include "PLLuM-8x7B-chat-gguf-bf16/*" --local-dir ./bf16/
Faster downloads with hf_transfer
To significantly speed up downloading (up to 1GB/s), you can use the hf_transfer library:
# Install hf_transfer
pip install hf_transfer
# Download with hf_transfer enabled (much faster)
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF --include "PLLuM-8x7B-chat-gguf-q4_k_m.gguf" --local-dir ./
Joining split files after downloading
If you downloaded a split model, you can join it using:
# On Linux/Mac systems
cat PLLuM-8x7B-chat-gguf-F16.part-* > PLLuM-8x7B-chat-gguf-F16.gguf
# On Windows systems
copy /b PLLuM-8x7B-chat-gguf-F16.part-* PLLuM-8x7B-chat-gguf-F16.gguf
How to run the model
Using llama.cpp
In these examples, we will use the PLLuM model from our unofficial repository. You can download your preferred quantization from the available models table above.
Once downloaded, place your model in the models
directory.
Unix-based systems (Linux, macOS, etc.):
Input prompt (One-and-done)
./llama-cli -m models/PLLuM-8x7B-chat-gguf-q4_k_m.gguf --prompt "Pytanie: Jakie są największe miasta w Polsce? Odpowiedź:"
Windows:
Input prompt (One-and-done)
./llama-cli.exe -m models\PLLuM-8x7B-chat-gguf-q4_k_m.gguf --prompt "Pytanie: Jakie są największe miasta w Polsce? Odpowiedź:"
For detailed and up-to-date information, please refer to the official llama.cpp documentation.
Using text-generation-webui
# Install text-generation-webui
git clone https://github.com/oobabooga/text-generation-webui.git
cd text-generation-webui
pip install -r requirements.txt
# Run the server with the selected model
python server.py --model path/to/PLLuM-8x7B-chat-gguf-q4_k_m.gguf
Using python and llama-cpp-python
from llama_cpp import Llama
# Load the model
llm = Llama(
model_path="path/to/PLLuM-8x7B-chat-gguf-q4_k_m.gguf",
n_ctx=4096, # Context size
n_threads=8, # Number of CPU threads
n_batch=512 # Batch size
)
# Example usage
prompt = "Pytanie: Jakie są najciekawsze zabytki w Krakowie? Odpowiedź:"
output = llm(
prompt,
max_tokens=512,
temperature=0.7,
top_p=0.95
)
print(output["choices"][0]["text"])
About the PLLuM model
PLLuM (Polish Large Language Model) is an advanced family of Polish language models developed by the Polish Ministry of Digital Affairs. This version of the model (8x7B-chat) has been optimized for conversations (chat).
Model capabilities:
- Generating text in Polish
- Answering questions
- Summarizing texts
- Creating content
- Translation
- Explaining concepts
- Conducting conversations
License
The base PLLuM 8x7B-chat model is distributed under the Apache License 2.0. Quantized versions are subject to the same license.
Authors
The author of the repository and quantization is Piotr Bednarski
- Downloads last month
- 282
Model tree for piotrmaciejbednarski/PLLuM-8x7B-chat-GGUF
Base model
CYFRAGOVPL/PLLuM-8x7B-chat