|
--- |
|
language: |
|
- pt |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- lener_br |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: checkpoints |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: lener_br |
|
type: lener_br |
|
metrics: |
|
- name: F1 |
|
type: f1 |
|
value: 0.8716487228203504 |
|
- name: Precision |
|
type: precision |
|
value: 0.8559286898839138 |
|
- name: Recall |
|
type: recall |
|
value: 0.8879569892473118 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9755893153732458 |
|
- name: Loss |
|
type: loss |
|
value: 0.1133928969502449 |
|
widget: |
|
- text: "Acrescento que não há de se falar em violação do artigo 114, § 3º, da Constituição Federal, posto que referido dispositivo revela-se impertinente, tratando da possibilidade de ajuizamento de dissídio coletivo pelo Ministério Público do Trabalho nos casos de greve em atividade essencial." |
|
--- |
|
|
|
## (BERT base) NER model in the legal domain in Portuguese (LeNER-Br) |
|
|
|
**ner-bert-base-portuguese-cased-lenerbr** is a NER model (token classification) in the legal domain in Portuguese that was finetuned on 16/12/2021 in Google Colab from the model [BERTimbau base](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the dataset [LeNER_br](https://huggingface.co/datasets/lener_br) by using a NER objective. |
|
|
|
Note: due to the small size of BERTimbau base and finetuning dataset, the model overfitted before to reach the end of training. Here are the overall final metrics on the validation dataset (*note: see the paragraph "Validation metrics by Named Entity" to get detailed metrics*): |
|
- **f1**: 0.8716487228203504 |
|
- **precision**: 0.8559286898839138 |
|
- **recall**: 0.8879569892473118 |
|
- **accuracy**: 0.9755893153732458 |
|
- **loss**: 0.1133928969502449 |
|
|
|
## Widget & APP |
|
|
|
You can test this model into the widget of this page. |
|
|
|
## Using the model for inference in production |
|
```` |
|
# install pytorch: check https://pytorch.org/ |
|
# !pip install transformers |
|
from transformers import AutoModelForTokenClassification, AutoTokenizer |
|
import torch |
|
|
|
# parameters |
|
model_name = "ner-bert-base-portuguese-cased-lenebr" |
|
model = AutoModelForTokenClassification.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
input_text = "EMENTA: APELAÇÃO CÍVEL - AÇÃO DE INDENIZAÇÃO POR DANOS MORAIS - PRELIMINAR - ARGUIDA PELO MINISTÉRIO PÚBLICO EM GRAU RECURSAL - NULIDADE - AUSÊNCIA DE IN- TERVENÇÃO DO PARQUET NA INSTÂNCIA A QUO - PRESENÇA DE INCAPAZ - PREJUÍZO EXISTENTE - PRELIMINAR ACOLHIDA - NULIDADE RECONHECIDA." |
|
|
|
# tokenization |
|
inputs = tokenizer(input_text, max_length=512, truncation=True, return_tensors="pt") |
|
tokens = inputs.tokens() |
|
|
|
# get predictions |
|
outputs = model(**inputs).logits |
|
predictions = torch.argmax(outputs, dim=2) |
|
|
|
# print predictions |
|
for token, prediction in zip(tokens, predictions[0].numpy()): |
|
print((token, model.config.id2label[prediction])) |
|
```` |
|
You can use pipeline, too. However, it seems to have an issue regarding to the max_length of the input sequence. |
|
```` |
|
!pip install transformers |
|
import transformers |
|
from transformers import pipeline |
|
|
|
model_name = "ner-bert-base-portuguese-cased-lenebr" |
|
|
|
ner = pipeline( |
|
"ner", |
|
model=model_name |
|
) |
|
|
|
ner(input_text) |
|
```` |
|
## Training procedure |
|
|
|
### Training results |
|
|
|
```` |
|
Num examples = 7828 |
|
Num Epochs = 3 |
|
Instantaneous batch size per device = 8 |
|
Total train batch size (w. parallel, distributed & accumulation) = 8 |
|
Gradient Accumulation steps = 1 |
|
Total optimization steps = 2937 |
|
|
|
Step Training Loss Validation Loss Precision Recall F1 Accuracy |
|
290 0.315100 0.141881 0.764542 0.709462 0.735973 0.960550 |
|
580 0.089100 0.137700 0.729155 0.810538 0.767695 0.959940 |
|
870 0.071700 0.122069 0.780277 0.872903 0.823995 0.967955 |
|
1160 0.047500 0.125950 0.800312 0.881720 0.839046 0.968367 |
|
1450 0.034900 0.129228 0.763666 0.910323 0.830570 0.969068 |
|
1740 0.036100 0.113393 0.855929 0.887957 0.871649 0.975589 |
|
2030 0.037800 0.121275 0.817230 0.889462 0.851818 0.970393 |
|
2320 0.018700 0.115745 0.836066 0.877419 0.856243 0.973136 |
|
2610 0.017100 0.118826 0.822488 0.888817 0.854367 0.973471 |
|
```` |
|
|
|
### Validation metrics by Named Entity |
|
```` |
|
Num examples = 1177 |
|
|
|
{'JURISPRUDENCIA': {'f1': 0.6641509433962263, |
|
'number': 657, |
|
'precision': 0.6586826347305389, |
|
'recall': 0.669710806697108}, |
|
'LEGISLACAO': {'f1': 0.8489082969432314, |
|
'number': 571, |
|
'precision': 0.8466898954703833, |
|
'recall': 0.851138353765324}, |
|
'LOCAL': {'f1': 0.8066037735849058, |
|
'number': 194, |
|
'precision': 0.7434782608695653, |
|
'recall': 0.8814432989690721}, |
|
'ORGANIZACAO': {'f1': 0.8540462427745664, |
|
'number': 1340, |
|
'precision': 0.8277310924369747, |
|
'recall': 0.8820895522388059}, |
|
'PESSOA': {'f1': 0.9845722300140253, |
|
'number': 1072, |
|
'precision': 0.9868791002811621, |
|
'recall': 0.9822761194029851}, |
|
'TEMPO': {'f1': 0.9527794381350867, |
|
'number': 816, |
|
'precision': 0.9299883313885647, |
|
'recall': 0.9767156862745098}, |
|
'overall_accuracy': 0.9755893153732458, |
|
'overall_f1': 0.8716487228203504, |
|
'overall_precision': 0.8559286898839138, |
|
'overall_recall': 0.8879569892473118} |
|
```` |