pierreguillou's picture
Update README.md
3358b54
|
raw
history blame
4.14 kB
metadata
language:
  - en
  - de
  - fr
  - ja
license: mit
tags:
  - generated_from_trainer
  - DocLayNet
  - COCO
  - PDF
  - IBM
  - Financial-Reports
  - Finance
  - Manuals
  - Scientific-Articles
  - Science
  - Laws
  - Law
  - Regulations
  - Patents
  - Government-Tenders
  - object-detection
  - image-segmentation
  - token-classification
datasets:
  - pierreguillou/DocLayNet-base
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: lilt-xlm-roberta-base-finetuned-with-DocLayNet-base-at-linelevel-ml384
    results: []

Document Understanding model (at line level)

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base with the DocLayNet base dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0003
  • Precision: 0.8584
  • Recall: 0.8584
  • F1: 0.8584
  • Accuracy: 0.8584

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.7223 0.21 500 0.7765 0.7741 0.7741 0.7741 0.7741
0.4469 0.42 1000 0.5914 0.8312 0.8312 0.8312 0.8312
0.3819 0.62 1500 0.8745 0.8102 0.8102 0.8102 0.8102
0.3361 0.83 2000 0.6991 0.8337 0.8337 0.8337 0.8337
0.2784 1.04 2500 0.7513 0.8119 0.8119 0.8119 0.8119
0.2377 1.25 3000 0.9048 0.8166 0.8166 0.8166 0.8166
0.2401 1.45 3500 1.2411 0.7939 0.7939 0.7939 0.7939
0.2054 1.66 4000 1.1594 0.8080 0.8080 0.8080 0.8080
0.1909 1.87 4500 0.7545 0.8425 0.8425 0.8425 0.8425
0.1704 2.08 5000 0.8567 0.8318 0.8318 0.8318 0.8318
0.1294 2.29 5500 0.8486 0.8489 0.8489 0.8489 0.8489
0.134 2.49 6000 0.7682 0.8573 0.8573 0.8573 0.8573
0.1354 2.7 6500 0.9871 0.8256 0.8256 0.8256 0.8256
0.1239 2.91 7000 1.1430 0.8189 0.8189 0.8189 0.8189
0.1012 3.12 7500 0.8272 0.8386 0.8386 0.8386 0.8386
0.0788 3.32 8000 1.0288 0.8365 0.8365 0.8365 0.8365
0.0802 3.53 8500 0.7197 0.8849 0.8849 0.8849 0.8849
0.0861 3.74 9000 1.1420 0.8320 0.8320 0.8320 0.8320
0.0639 3.95 9500 0.9563 0.8585 0.8585 0.8585 0.8585
0.0464 4.15 10000 1.0768 0.8511 0.8511 0.8511 0.8511
0.0412 4.36 10500 1.1184 0.8439 0.8439 0.8439 0.8439
0.039 4.57 11000 0.9634 0.8636 0.8636 0.8636 0.8636
0.0469 4.78 11500 0.9585 0.8634 0.8634 0.8634 0.8634
0.0395 4.99 12000 1.0003 0.8584 0.8584 0.8584 0.8584

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2