|
--- |
|
tags: |
|
- trocr |
|
- image-to-text |
|
- endpoints-template |
|
library_name: generic |
|
--- |
|
|
|
# Fork of [microsoft/trocr-base-printed](https://huggingface.co/microsoft/trocr-base-printed) for an `OCR` Inference endpoint. |
|
|
|
This repository implements a `custom` task for `ocr-detection` for 🤗 Inference Endpoints. The code for the customized pipeline is in the [pipeline.py](https://huggingface.co/philschmid/trocr-base-printed/blob/main/pipeline.py). |
|
|
|
To use deploy this model as an Inference Endpoint, you have to select `Custom` as the task to use the `pipeline.py` file. -> _double check if it is selected_ |
|
|
|
## Run Request |
|
|
|
The endpoint expects the image to be served as `binary`. Below is an curl and python example |
|
|
|
#### cURL |
|
|
|
1. get image |
|
|
|
```bash |
|
wget https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg -O test.jpg |
|
``` |
|
|
|
2. send cURL request |
|
|
|
```bash |
|
curl --request POST \ |
|
--url https://{ENDPOINT}/ \ |
|
--header 'Content-Type: image/jpg' \ |
|
--header 'Authorization: Bearer {HF_TOKEN}' \ |
|
--data-binary '@test.jpg' |
|
``` |
|
|
|
3. the expected output |
|
|
|
```json |
|
{"text": "INDLUS THE" |
|
``` |
|
|
|
#### Python |
|
|
|
|
|
1. get image |
|
|
|
```bash |
|
wget https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg -O test.jpg |
|
``` |
|
|
|
2. run request |
|
|
|
```python |
|
import json |
|
from typing import List |
|
import requests as r |
|
import base64 |
|
|
|
ENDPOINT_URL = "" |
|
HF_TOKEN = "" |
|
|
|
|
|
def predict(path_to_image: str = None, candiates: List[str] = None): |
|
with open(path_to_image, "rb") as i: |
|
b64 = base64.b64encode(i.read()) |
|
|
|
payload = {"inputs": {"image": b64.decode("utf-8"), "candiates": candiates}} |
|
response = r.post( |
|
ENDPOINT_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, json=payload |
|
) |
|
return response.json() |
|
|
|
|
|
prediction = predict( |
|
path_to_image="palace.jpg", candiates=["sea", "palace", "car", "ship"] |
|
) |
|
``` |
|
|
|
expected output |
|
|
|
```python |
|
[{'label': 'palace', 'score': 0.9996134638786316}, |
|
{'label': 'car', 'score': 0.0002602009626571089}, |
|
{'label': 'ship', 'score': 0.00011758189066313207}, |
|
{'label': 'sea', 'score': 8.666840585647151e-06}] |
|
``` |
|
|
|
|
|
|