trocr-base-printed / README.md
philschmid's picture
philschmid HF staff
Update README.md
2804c96
|
raw
history blame
1.77 kB
---
tags:
- trocr
- image-to-text
- endpoints-template
library_name: generic
---
# Fork of [microsoft/trocr-base-printed](https://huggingface.co/microsoft/trocr-base-printed) for an `OCR` Inference endpoint.
This repository implements a `custom` task for `ocr-detection` for 🤗 Inference Endpoints. The code for the customized pipeline is in the [pipeline.py](https://huggingface.co/philschmid/trocr-base-printed/blob/main/pipeline.py).
To use deploy this model as an Inference Endpoint, you have to select `Custom` as the task to use the `pipeline.py` file. -> _double check if it is selected_
## Run Request
The endpoint expects the image to be served as `binary`. Below is an curl and python example
#### cURL
1. get image
```bash
wget https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg -O test.jpg
```
2. send cURL request
```bash
curl --request POST \
--url https://{ENDPOINT}/ \
--header 'Content-Type: image/jpg' \
--header 'Authorization: Bearer {HF_TOKEN}' \
--data-binary '@test.jpg'
```
3. the expected output
```json
{"text": "INDLUS THE"}
```
#### Python
1. get image
```bash
wget https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg -O test.jpg
```
2. run request
```python
import json
from typing import List
import requests as r
import base64
ENDPOINT_URL=""
HF_TOKEN=""
def predict(path_to_image:str=None):
with open(path_to_image, "rb") as i:
b = i.read()
headers= {
"Authorization": f"Bearer {HF_TOKEN}",
"Content-Type": "image/jpeg" # content type of image
}
response = r.post(ENDPOINT_URL, headers=headers, data=b)
return response.json()
prediction = predict(path_to_image="test.jpg")
prediction
```
expected output
```python
{"text": "INDLUS THE"}
```