librarian-bot's picture
Librarian Bot: Add base_model information to model
e832a5c
|
raw
history blame
2.62 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - amazon_reviews_multi
metrics:
  - accuracy
  - f1
base_model: distilbert-base-multilingual-cased
model-index:
  - name: distilbert-base-multilingual-cased-sentiment
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: amazon_reviews_multi
          type: amazon_reviews_multi
          args: all_languages
        metrics:
          - type: accuracy
            value: 0.7648
            name: Accuracy
          - type: f1
            value: 0.7648
            name: F1

distilbert-base-multilingual-cased-sentiment

This model is a fine-tuned version of distilbert-base-multilingual-cased on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5842
  • Accuracy: 0.7648
  • F1: 0.7648

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 33
  • distributed_type: sagemaker_data_parallel
  • num_devices: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6405 0.53 5000 0.5826 0.7498 0.7498
0.5698 1.07 10000 0.5686 0.7612 0.7612
0.5286 1.6 15000 0.5593 0.7636 0.7636
0.5141 2.13 20000 0.5842 0.7648 0.7648
0.4763 2.67 25000 0.5736 0.7637 0.7637
0.4549 3.2 30000 0.6027 0.7593 0.7593
0.4231 3.73 35000 0.6017 0.7552 0.7552
0.3965 4.27 40000 0.6489 0.7551 0.7551
0.3744 4.8 45000 0.6426 0.7534 0.7534

Framework versions

  • Transformers 4.12.3
  • Pytorch 1.9.1
  • Datasets 1.15.1
  • Tokenizers 0.10.3