|
|
|
--- |
|
language: en |
|
tags: |
|
- sagemaker |
|
- bart |
|
- summarization |
|
license: apache-2.0 |
|
datasets: |
|
- samsum |
|
widget: |
|
- text: | |
|
Jeff: Can I train a π€ Transformers model on Amazon SageMaker? |
|
Philipp: Sure you can use the new Hugging Face Deep Learning Container. |
|
Jeff: ok. |
|
Jeff: and how can I get started? |
|
Jeff: where can I find documentation? |
|
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face |
|
model-index: |
|
- name: bart-large-cnn-samsum |
|
results: |
|
- task: |
|
name: Abstractive Text Summarization |
|
type: abstractive-text-summarization |
|
dataset: |
|
name: SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization |
|
type: samsum |
|
metrics: |
|
- name: Validation ROGUE-1 |
|
type: rogue-1 |
|
value: 42.621 |
|
- name: Validation ROGUE-2 |
|
type: rogue-2 |
|
value: 21.9825 |
|
- name: Validation ROGUE-L |
|
type: rogue-l |
|
value: 33.034 |
|
- name: Test ROGUE-1 |
|
type: rogue-1 |
|
value: 41.3174 |
|
- name: Test ROGUE-2 |
|
type: rogue-2 |
|
value: 20.8716 |
|
- name: Test ROGUE-L |
|
type: rogue-l |
|
value: 32.1337 |
|
--- |
|
|
|
## `bart-large-cnn-samsum` |
|
|
|
This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container. |
|
|
|
For more information look at: |
|
- [π€ Transformers Documentation: Amazon SageMaker](https://huggingface.co/transformers/sagemaker.html) |
|
- [Example Notebooks](https://github.com/huggingface/notebooks/tree/master/sagemaker) |
|
- [Amazon SageMaker documentation for Hugging Face](https://docs.aws.amazon.com/sagemaker/latest/dg/hugging-face.html) |
|
- [Python SDK SageMaker documentation for Hugging Face](https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/index.html) |
|
- [Deep Learning Container](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#huggingface-training-containers) |
|
|
|
## Hyperparameters |
|
```json |
|
{ |
|
"dataset_name": "samsum", |
|
"do_eval": true, |
|
"do_predict": true, |
|
"do_train": true, |
|
"fp16": true, |
|
"learning_rate": 5e-05, |
|
"model_name_or_path": "facebook/bart-large-cnn", |
|
"num_train_epochs": 3, |
|
"output_dir": "/opt/ml/model", |
|
"per_device_eval_batch_size": 4, |
|
"per_device_train_batch_size": 4, |
|
"predict_with_generate": true, |
|
"seed": 7 |
|
} |
|
``` |
|
|
|
## Usage |
|
```python |
|
from transformers import pipeline |
|
summarizer = pipeline("summarization", model="philschmid/bart-large-cnn-samsum") |
|
|
|
conversation = '''Jeff: Can I train a π€ Transformers model on Amazon SageMaker? |
|
Philipp: Sure you can use the new Hugging Face Deep Learning Container. |
|
Jeff: ok. |
|
Jeff: and how can I get started? |
|
Jeff: where can I find documentation? |
|
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face |
|
''' |
|
nlp(conversation) |
|
``` |
|
|
|
## Results |
|
|
|
| key | value | |
|
| --- | ----- | |
|
| eval_rouge1 | 42.621 | |
|
| eval_rouge2 | 21.9825 | |
|
| eval_rougeL | 33.034 | |
|
| eval_rougeLsum | 39.6783 | |
|
| test_rouge1 | 41.3174 | |
|
| test_rouge2 | 20.8716 | |
|
| test_rougeL | 32.1337 | |
|
| test_rougeLsum | 38.4149 | |
|
|
|
|