philschmid's picture
philschmid HF staff
Align task name and type with Hub taxonomy (#3)
78e20b3
|
raw
history blame
3.8 kB
metadata
language: en
tags:
  - sagemaker
  - bart
  - summarization
datasets:
  - samsum
widget:
  - text: >
      Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker? 

      Philipp: Sure you can use the new Hugging Face Deep Learning Container. 

      Jeff: ok.

      Jeff: and how can I get started? 

      Jeff: where can I find documentation? 

      Philipp: ok, ok you can find everything here.
      https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face
model-index:
  - name: bart-large-cnn-samsum
    results:
      - task:
          type: summarization
          name: Summarization
        dataset:
          name: >-
            SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive
            Summarization
          type: samsum
        metrics:
          - name: Validation ROGUE-1
            type: rogue-1
            value: 42.621
          - name: Validation ROGUE-2
            type: rogue-2
            value: 21.9825
          - name: Validation ROGUE-L
            type: rogue-l
            value: 33.034
          - name: Test ROGUE-1
            type: rogue-1
            value: 41.3174
          - name: Test ROGUE-2
            type: rogue-2
            value: 20.8716
          - name: Test ROGUE-L
            type: rogue-l
            value: 32.1337
      - task:
          type: summarization
          name: Summarization
        dataset:
          name: samsum
          type: samsum
          config: samsum
          split: test
        metrics:
          - name: ROUGE-1
            type: rouge
            value: 41.3282
            verified: true
          - name: ROUGE-2
            type: rouge
            value: 20.8755
            verified: true
          - name: ROUGE-L
            type: rouge
            value: 32.1353
            verified: true
          - name: ROUGE-LSUM
            type: rouge
            value: 38.401
            verified: true
          - name: loss
            type: loss
            value: 1.4297215938568115
            verified: true
          - name: gen_len
            type: gen_len
            value: 60.0757
            verified: true

bart-large-cnn-samsum

This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container.

For more information look at:

Hyperparameters

{
    "dataset_name": "samsum",
    "do_eval": true,
    "do_predict": true,
    "do_train": true,
    "fp16": true,
    "learning_rate": 5e-05,
    "model_name_or_path": "facebook/bart-large-cnn",
    "num_train_epochs": 3,
    "output_dir": "/opt/ml/model",
    "per_device_eval_batch_size": 4,
    "per_device_train_batch_size": 4,
    "predict_with_generate": true,
    "seed": 7
}

Usage

from transformers import pipeline
summarizer = pipeline("summarization", model="philschmid/bart-large-cnn-samsum")

conversation = '''Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker? 
Philipp: Sure you can use the new Hugging Face Deep Learning Container. 
Jeff: ok.
Jeff: and how can I get started? 
Jeff: where can I find documentation? 
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face                                           
'''
summarizer(conversation)

Results

key value
eval_rouge1 42.621
eval_rouge2 21.9825
eval_rougeL 33.034
eval_rougeLsum 39.6783
test_rouge1 41.3174
test_rouge2 20.8716
test_rougeL 32.1337
test_rougeLsum 38.4149