pengdadaaa's picture
Upload 741 files
786f6a6 verified
raw
history blame
51.1 kB
""" ConvNeXt
Papers:
* `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf
@Article{liu2022convnet,
author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie},
title = {A ConvNet for the 2020s},
journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2022},
}
* `ConvNeXt-V2 - Co-designing and Scaling ConvNets with Masked Autoencoders` - https://arxiv.org/abs/2301.00808
@article{Woo2023ConvNeXtV2,
title={ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders},
author={Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon and Saining Xie},
year={2023},
journal={arXiv preprint arXiv:2301.00808},
}
Original code and weights from:
* https://github.com/facebookresearch/ConvNeXt, original copyright below
* https://github.com/facebookresearch/ConvNeXt-V2, original copyright below
Model defs atto, femto, pico, nano and _ols / _hnf variants are timm originals.
Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman
"""
# ConvNeXt
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the MIT license
# ConvNeXt-V2
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree (Attribution-NonCommercial 4.0 International (CC BY-NC 4.0))
# No code was used directly from ConvNeXt-V2, however the weights are CC BY-NC 4.0 so beware if using commercially.
from collections import OrderedDict
from functools import partial
from typing import Callable, Optional, Tuple, Union
import torch
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
from timm.layers import trunc_normal_, AvgPool2dSame, DropPath, Mlp, GlobalResponseNormMlp, \
LayerNorm2d, LayerNorm, create_conv2d, get_act_layer, make_divisible, to_ntuple
from timm.layers import NormMlpClassifierHead, ClassifierHead
from ._builder import build_model_with_cfg
from ._manipulate import named_apply, checkpoint_seq
from ._registry import generate_default_cfgs, register_model, register_model_deprecations
__all__ = ['ConvNeXt'] # model_registry will add each entrypoint fn to this
class Downsample(nn.Module):
def __init__(self, in_chs, out_chs, stride=1, dilation=1):
super().__init__()
avg_stride = stride if dilation == 1 else 1
if stride > 1 or dilation > 1:
avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d
self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False)
else:
self.pool = nn.Identity()
if in_chs != out_chs:
self.conv = create_conv2d(in_chs, out_chs, 1, stride=1)
else:
self.conv = nn.Identity()
def forward(self, x):
x = self.pool(x)
x = self.conv(x)
return x
class ConvNeXtBlock(nn.Module):
""" ConvNeXt Block
There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate
choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear
is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW.
"""
def __init__(
self,
in_chs: int,
out_chs: Optional[int] = None,
kernel_size: int = 7,
stride: int = 1,
dilation: Union[int, Tuple[int, int]] = (1, 1),
mlp_ratio: float = 4,
conv_mlp: bool = False,
conv_bias: bool = True,
use_grn: bool = False,
ls_init_value: Optional[float] = 1e-6,
act_layer: Union[str, Callable] = 'gelu',
norm_layer: Optional[Callable] = None,
drop_path: float = 0.,
):
"""
Args:
in_chs: Block input channels.
out_chs: Block output channels (same as in_chs if None).
kernel_size: Depthwise convolution kernel size.
stride: Stride of depthwise convolution.
dilation: Tuple specifying input and output dilation of block.
mlp_ratio: MLP expansion ratio.
conv_mlp: Use 1x1 convolutions for MLP and a NCHW compatible norm layer if True.
conv_bias: Apply bias for all convolution (linear) layers.
use_grn: Use GlobalResponseNorm in MLP (from ConvNeXt-V2)
ls_init_value: Layer-scale init values, layer-scale applied if not None.
act_layer: Activation layer.
norm_layer: Normalization layer (defaults to LN if not specified).
drop_path: Stochastic depth probability.
"""
super().__init__()
out_chs = out_chs or in_chs
dilation = to_ntuple(2)(dilation)
act_layer = get_act_layer(act_layer)
if not norm_layer:
norm_layer = LayerNorm2d if conv_mlp else LayerNorm
mlp_layer = partial(GlobalResponseNormMlp if use_grn else Mlp, use_conv=conv_mlp)
self.use_conv_mlp = conv_mlp
self.conv_dw = create_conv2d(
in_chs,
out_chs,
kernel_size=kernel_size,
stride=stride,
dilation=dilation[0],
depthwise=True,
bias=conv_bias,
)
self.norm = norm_layer(out_chs)
self.mlp = mlp_layer(out_chs, int(mlp_ratio * out_chs), act_layer=act_layer)
self.gamma = nn.Parameter(ls_init_value * torch.ones(out_chs)) if ls_init_value is not None else None
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]:
self.shortcut = Downsample(in_chs, out_chs, stride=stride, dilation=dilation[0])
else:
self.shortcut = nn.Identity()
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
shortcut = x
x = self.conv_dw(x)
if self.use_conv_mlp:
x = self.norm(x)
x = self.mlp(x)
else:
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = self.mlp(x)
x = x.permute(0, 3, 1, 2)
if self.gamma is not None:
x = x.mul(self.gamma.reshape(1, -1, 1, 1))
x = self.drop_path(x) + self.shortcut(shortcut)
return x
class ConvNeXtStage(nn.Module):
def __init__(
self,
in_chs,
out_chs,
kernel_size=7,
stride=2,
depth=2,
dilation=(1, 1),
drop_path_rates=None,
ls_init_value=1.0,
conv_mlp=False,
conv_bias=True,
use_grn=False,
act_layer='gelu',
norm_layer=None,
norm_layer_cl=None
):
super().__init__()
self.grad_checkpointing = False
if in_chs != out_chs or stride > 1 or dilation[0] != dilation[1]:
ds_ks = 2 if stride > 1 or dilation[0] != dilation[1] else 1
pad = 'same' if dilation[1] > 1 else 0 # same padding needed if dilation used
self.downsample = nn.Sequential(
norm_layer(in_chs),
create_conv2d(
in_chs,
out_chs,
kernel_size=ds_ks,
stride=stride,
dilation=dilation[0],
padding=pad,
bias=conv_bias,
),
)
in_chs = out_chs
else:
self.downsample = nn.Identity()
drop_path_rates = drop_path_rates or [0.] * depth
stage_blocks = []
for i in range(depth):
stage_blocks.append(ConvNeXtBlock(
in_chs=in_chs,
out_chs=out_chs,
kernel_size=kernel_size,
dilation=dilation[1],
drop_path=drop_path_rates[i],
ls_init_value=ls_init_value,
conv_mlp=conv_mlp,
conv_bias=conv_bias,
use_grn=use_grn,
act_layer=act_layer,
norm_layer=norm_layer if conv_mlp else norm_layer_cl,
))
in_chs = out_chs
self.blocks = nn.Sequential(*stage_blocks)
def forward(self, x):
x = self.downsample(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.blocks, x)
else:
x = self.blocks(x)
return x
class ConvNeXt(nn.Module):
r""" ConvNeXt
A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf
"""
def __init__(
self,
in_chans: int = 3,
num_classes: int = 1000,
global_pool: str = 'avg',
output_stride: int = 32,
depths: Tuple[int, ...] = (3, 3, 9, 3),
dims: Tuple[int, ...] = (96, 192, 384, 768),
kernel_sizes: Union[int, Tuple[int, ...]] = 7,
ls_init_value: Optional[float] = 1e-6,
stem_type: str = 'patch',
patch_size: int = 4,
head_init_scale: float = 1.,
head_norm_first: bool = False,
head_hidden_size: Optional[int] = None,
conv_mlp: bool = False,
conv_bias: bool = True,
use_grn: bool = False,
act_layer: Union[str, Callable] = 'gelu',
norm_layer: Optional[Union[str, Callable]] = None,
norm_eps: Optional[float] = None,
drop_rate: float = 0.,
drop_path_rate: float = 0.,
out_stage3: bool = False
):
"""
Args:
in_chans: Number of input image channels.
num_classes: Number of classes for classification head.
global_pool: Global pooling type.
output_stride: Output stride of network, one of (8, 16, 32).
depths: Number of blocks at each stage.
dims: Feature dimension at each stage.
kernel_sizes: Depthwise convolution kernel-sizes for each stage.
ls_init_value: Init value for Layer Scale, disabled if None.
stem_type: Type of stem.
patch_size: Stem patch size for patch stem.
head_init_scale: Init scaling value for classifier weights and biases.
head_norm_first: Apply normalization before global pool + head.
head_hidden_size: Size of MLP hidden layer in head if not None and head_norm_first == False.
conv_mlp: Use 1x1 conv in MLP, improves speed for small networks w/ chan last.
conv_bias: Use bias layers w/ all convolutions.
use_grn: Use Global Response Norm (ConvNeXt-V2) in MLP.
act_layer: Activation layer type.
norm_layer: Normalization layer type.
drop_rate: Head pre-classifier dropout rate.
drop_path_rate: Stochastic depth drop rate.
"""
super().__init__()
self.out_stage3 = out_stage3
assert output_stride in (8, 16, 32)
kernel_sizes = to_ntuple(4)(kernel_sizes)
if norm_layer is None:
norm_layer = LayerNorm2d
norm_layer_cl = norm_layer if conv_mlp else LayerNorm
if norm_eps is not None:
norm_layer = partial(norm_layer, eps=norm_eps)
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)
else:
assert conv_mlp,\
'If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input'
norm_layer_cl = norm_layer
if norm_eps is not None:
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)
self.num_classes = num_classes
self.drop_rate = drop_rate
self.feature_info = []
assert stem_type in ('patch', 'overlap', 'overlap_tiered')
if stem_type == 'patch':
# NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4
self.stem = nn.Sequential(
nn.Conv2d(in_chans, dims[0], kernel_size=patch_size, stride=patch_size, bias=conv_bias),
norm_layer(dims[0]),
)
stem_stride = patch_size
else:
mid_chs = make_divisible(dims[0] // 2) if 'tiered' in stem_type else dims[0]
self.stem = nn.Sequential(
nn.Conv2d(in_chans, mid_chs, kernel_size=3, stride=2, padding=1, bias=conv_bias),
nn.Conv2d(mid_chs, dims[0], kernel_size=3, stride=2, padding=1, bias=conv_bias),
norm_layer(dims[0]),
)
stem_stride = 4
self.stages = nn.Sequential()
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
stages = []
prev_chs = dims[0]
curr_stride = stem_stride
dilation = 1
# 4 feature resolution stages, each consisting of multiple residual blocks
for i in range(4):
stride = 2 if curr_stride == 2 or i > 0 else 1 #2
if curr_stride >= output_stride and stride > 1:
dilation *= stride
stride = 1
curr_stride *= stride #16*2
first_dilation = 1 if dilation in (1, 2) else 2 #1
out_chs = dims[i] #1536
stages.append(ConvNeXtStage(
prev_chs,
out_chs,
kernel_size=kernel_sizes[i],
stride=stride,
dilation=(first_dilation, dilation),
depth=depths[i],
drop_path_rates=dp_rates[i],
ls_init_value=ls_init_value,
conv_mlp=conv_mlp,
conv_bias=conv_bias,
use_grn=use_grn,
act_layer=act_layer,
norm_layer=norm_layer,
norm_layer_cl=norm_layer_cl,
))
prev_chs = out_chs
# NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2
self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')]
self.stages = nn.Sequential(*stages)
self.num_features = prev_chs
# if head_norm_first == true, norm -> global pool -> fc ordering, like most other nets
# otherwise pool -> norm -> fc, the default ConvNeXt ordering (pretrained FB weights)
if head_norm_first:
assert not head_hidden_size
self.norm_pre = norm_layer(self.num_features)
self.head = ClassifierHead(
self.num_features,
num_classes,
pool_type=global_pool,
drop_rate=self.drop_rate,
)
else:
self.norm_pre = nn.Identity()
self.head = NormMlpClassifierHead(
self.num_features,
num_classes,
hidden_size=head_hidden_size,
pool_type=global_pool,
drop_rate=self.drop_rate,
norm_layer=norm_layer,
act_layer='gelu',
)
named_apply(partial(_init_weights, head_init_scale=head_init_scale), self)
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(
stem=r'^stem',
blocks=r'^stages\.(\d+)' if coarse else [
(r'^stages\.(\d+)\.downsample', (0,)), # blocks
(r'^stages\.(\d+)\.blocks\.(\d+)', None),
(r'^norm_pre', (99999,))
]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
for s in self.stages:
s.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head.fc
def reset_classifier(self, num_classes=0, global_pool=None):
self.head.reset(num_classes, global_pool)
def forward_features_out_stage3(self, x):
# x = self.stem(x)
# x = self.stages(x)
# x = self.norm_pre(x)
x = self.stem(x)
for i, stage in enumerate(self.stages):
x = stage(x)
if i == 2:
out_stage3 = x
# y = x.detach()
# # my_gp = nn.AdaptiveAvgPool2d(1)
# # y = my_gp(y)
# # print('in model: ', y.shape)
# my_gp = nn.AdaptiveMaxPool2d(1)
# y = my_gp(y)
# y = y.reshape(y.size(0), -1)
x = self.norm_pre(x)
return x,out_stage3
def forward_features(self,x):
x = self.stem(x)
x = self.stages(x)
x = self.norm_pre(x)
return x
def forward_head(self, x, pre_logits: bool = False):
return self.head(x, pre_logits=True) if pre_logits else self.head(x)
def forward(self, x):
# x = self.forward_features(x)
# x = self.forward_head(x)
if self.out_stage3:
out_stage4,out_stage3 = self.forward_features_out_stage3(x)
# x = self.forward_head(x)
# x = self.forward_head(x)
return out_stage4,out_stage3
else:
x = self.forward_features(x)
x = self.forward_head(x)
return x
# def forward(self, x):
# x = self.forward_features(x)
# x = self.forward_head(x)
# return x
def _init_weights(module, name=None, head_init_scale=1.0):
if isinstance(module, nn.Conv2d):
trunc_normal_(module.weight, std=.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Linear):
trunc_normal_(module.weight, std=.02)
nn.init.zeros_(module.bias)
if name and 'head.' in name:
module.weight.data.mul_(head_init_scale)
module.bias.data.mul_(head_init_scale)
def checkpoint_filter_fn(state_dict, model):
""" Remap FB checkpoints -> timm """
if 'head.norm.weight' in state_dict or 'norm_pre.weight' in state_dict:
return state_dict # non-FB checkpoint
if 'model' in state_dict:
state_dict = state_dict['model']
out_dict = {}
if 'visual.trunk.stem.0.weight' in state_dict:
out_dict = {k.replace('visual.trunk.', ''): v for k, v in state_dict.items() if k.startswith('visual.trunk.')}
if 'visual.head.proj.weight' in state_dict:
out_dict['head.fc.weight'] = state_dict['visual.head.proj.weight']
out_dict['head.fc.bias'] = torch.zeros(state_dict['visual.head.proj.weight'].shape[0])
elif 'visual.head.mlp.fc1.weight' in state_dict:
out_dict['head.pre_logits.fc.weight'] = state_dict['visual.head.mlp.fc1.weight']
out_dict['head.pre_logits.fc.bias'] = state_dict['visual.head.mlp.fc1.bias']
out_dict['head.fc.weight'] = state_dict['visual.head.mlp.fc2.weight']
out_dict['head.fc.bias'] = torch.zeros(state_dict['visual.head.mlp.fc2.weight'].shape[0])
return out_dict
import re
for k, v in state_dict.items():
k = k.replace('downsample_layers.0.', 'stem.')
k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k)
k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k)
k = k.replace('dwconv', 'conv_dw')
k = k.replace('pwconv', 'mlp.fc')
if 'grn' in k:
k = k.replace('grn.beta', 'mlp.grn.bias')
k = k.replace('grn.gamma', 'mlp.grn.weight')
v = v.reshape(v.shape[-1])
k = k.replace('head.', 'head.fc.')
if k.startswith('norm.'):
k = k.replace('norm', 'head.norm')
if v.ndim == 2 and 'head' not in k:
model_shape = model.state_dict()[k].shape
v = v.reshape(model_shape)
out_dict[k] = v
return out_dict
def _create_convnext(variant, pretrained=False, **kwargs):
if kwargs.get('pretrained_cfg', '') == 'fcmae':
# NOTE fcmae pretrained weights have no classifier or final norm-layer (`head.norm`)
# This is workaround loading with num_classes=0 w/o removing norm-layer.
kwargs.setdefault('pretrained_strict', False)
model = build_model_with_cfg(
ConvNeXt, variant, pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True),
**kwargs)
return model
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'stem.0', 'classifier': 'head.fc',
**kwargs
}
def _cfgv2(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'stem.0', 'classifier': 'head.fc',
'license': 'cc-by-nc-4.0', 'paper_ids': 'arXiv:2301.00808',
'paper_name': 'ConvNeXt-V2: Co-designing and Scaling ConvNets with Masked Autoencoders',
'origin_url': 'https://github.com/facebookresearch/ConvNeXt-V2',
**kwargs
}
default_cfgs = generate_default_cfgs({
# timm specific variants
'convnext_tiny.in12k_ft_in1k': _cfg(
hf_hub_id='timm/',
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnext_small.in12k_ft_in1k': _cfg(
hf_hub_id='timm/',
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnext_atto.d2_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_atto_d2-01bb0f51.pth',
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=0.95),
'convnext_atto_ols.a2_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_atto_ols_a2-78d1c8f3.pth',
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=0.95),
'convnext_femto.d1_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_femto_d1-d71d5b4c.pth',
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=0.95),
'convnext_femto_ols.d1_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_femto_ols_d1-246bf2ed.pth',
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=0.95),
'convnext_pico.d1_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_pico_d1-10ad7f0d.pth',
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=0.95),
'convnext_pico_ols.d1_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_pico_ols_d1-611f0ca7.pth',
hf_hub_id='timm/',
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnext_nano.in12k_ft_in1k': _cfg(
hf_hub_id='timm/',
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnext_nano.d1h_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_nano_d1h-7eb4bdea.pth',
hf_hub_id='timm/',
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnext_nano_ols.d1h_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_nano_ols_d1h-ae424a9a.pth',
hf_hub_id='timm/',
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnext_tiny_hnf.a2h_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_tiny_hnf_a2h-ab7e9df2.pth',
hf_hub_id='timm/',
crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnext_tiny.in12k_ft_in1k_384': _cfg(
hf_hub_id='timm/',
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
'convnext_small.in12k_ft_in1k_384': _cfg(
hf_hub_id='timm/',
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
'convnext_nano.in12k': _cfg(
hf_hub_id='timm/',
crop_pct=0.95, num_classes=11821),
'convnext_tiny.in12k': _cfg(
hf_hub_id='timm/',
crop_pct=0.95, num_classes=11821),
'convnext_small.in12k': _cfg(
hf_hub_id='timm/',
crop_pct=0.95, num_classes=11821),
'convnext_tiny.fb_in22k_ft_in1k': _cfg(
url='https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_1k_224.pth',
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnext_small.fb_in22k_ft_in1k': _cfg(
url='https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_1k_224.pth',
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnext_base.fb_in22k_ft_in1k': _cfg(
url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_224.pth',
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnext_large.fb_in22k_ft_in1k': _cfg(
url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_224.pth',
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnext_xlarge.fb_in22k_ft_in1k': _cfg(
url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_224_ema.pth',
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnext_tiny.fb_in1k': _cfg(
url="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth",
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnext_small.fb_in1k': _cfg(
url="https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth",
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnext_base.fb_in1k': _cfg(
url="https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth",
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnext_large.fb_in1k': _cfg(
url="https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth",
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnext_tiny.fb_in22k_ft_in1k_384': _cfg(
url='https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_1k_384.pth',
hf_hub_id='timm/',
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
'convnext_small.fb_in22k_ft_in1k_384': _cfg(
url='https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_1k_384.pth',
hf_hub_id='timm/',
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
'convnext_base.fb_in22k_ft_in1k_384': _cfg(
url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_384.pth',
hf_hub_id='timm/',
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
'convnext_large.fb_in22k_ft_in1k_384': _cfg(
url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_384.pth',
hf_hub_id='timm/',
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
'convnext_xlarge.fb_in22k_ft_in1k_384': _cfg(
url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_384_ema.pth',
hf_hub_id='timm/',
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
'convnext_tiny.fb_in22k': _cfg(
url="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_224.pth",
hf_hub_id='timm/',
num_classes=21841),
'convnext_small.fb_in22k': _cfg(
url="https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_224.pth",
hf_hub_id='timm/',
num_classes=21841),
'convnext_base.fb_in22k': _cfg(
url="https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth",
hf_hub_id='timm/',
num_classes=21841),
'convnext_large.fb_in22k': _cfg(
url="https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth",
hf_hub_id='timm/',
num_classes=21841),
'convnext_xlarge.fb_in22k': _cfg(
url="https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth",
hf_hub_id='timm/',
num_classes=21841),
'convnextv2_nano.fcmae_ft_in22k_in1k': _cfgv2(
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_224_ema.pt',
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnextv2_nano.fcmae_ft_in22k_in1k_384': _cfgv2(
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_384_ema.pt',
hf_hub_id='timm/',
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
'convnextv2_tiny.fcmae_ft_in22k_in1k': _cfgv2(
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_224_ema.pt",
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnextv2_tiny.fcmae_ft_in22k_in1k_384': _cfgv2(
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_384_ema.pt",
hf_hub_id='timm/',
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
'convnextv2_base.fcmae_ft_in22k_in1k': _cfgv2(
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_224_ema.pt",
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnextv2_base.fcmae_ft_in22k_in1k_384': _cfgv2(
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_384_ema.pt",
hf_hub_id='timm/',
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
'convnextv2_large.fcmae_ft_in22k_in1k': _cfgv2(
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_224_ema.pt",
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnextv2_large.fcmae_ft_in22k_in1k_384': _cfgv2(
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_384_ema.pt",
hf_hub_id='timm/',
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
'convnextv2_huge.fcmae_ft_in22k_in1k_384': _cfgv2(
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_384_ema.pt",
hf_hub_id='timm/',
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
'convnextv2_huge.fcmae_ft_in22k_in1k_512': _cfgv2(
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_512_ema.pt",
hf_hub_id='timm/',
input_size=(3, 512, 512), pool_size=(15, 15), crop_pct=1.0, crop_mode='squash'),
'convnextv2_atto.fcmae_ft_in1k': _cfgv2(
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_atto_1k_224_ema.pt',
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=0.95),
'convnextv2_femto.fcmae_ft_in1k': _cfgv2(
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_femto_1k_224_ema.pt',
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=0.95),
'convnextv2_pico.fcmae_ft_in1k': _cfgv2(
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_pico_1k_224_ema.pt',
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=0.95),
'convnextv2_nano.fcmae_ft_in1k': _cfgv2(
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_nano_1k_224_ema.pt',
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnextv2_tiny.fcmae_ft_in1k': _cfgv2(
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_tiny_1k_224_ema.pt",
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnextv2_base.fcmae_ft_in1k': _cfgv2(
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_base_1k_224_ema.pt",
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnextv2_large.fcmae_ft_in1k': _cfgv2(
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_large_1k_224_ema.pt",
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnextv2_huge.fcmae_ft_in1k': _cfgv2(
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_huge_1k_224_ema.pt",
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'convnextv2_atto.fcmae': _cfgv2(
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_atto_1k_224_fcmae.pt',
hf_hub_id='timm/',
num_classes=0),
'convnextv2_femto.fcmae': _cfgv2(
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_femto_1k_224_fcmae.pt',
hf_hub_id='timm/',
num_classes=0),
'convnextv2_pico.fcmae': _cfgv2(
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_pico_1k_224_fcmae.pt',
hf_hub_id='timm/',
num_classes=0),
'convnextv2_nano.fcmae': _cfgv2(
url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_nano_1k_224_fcmae.pt',
hf_hub_id='timm/',
num_classes=0),
'convnextv2_tiny.fcmae': _cfgv2(
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_tiny_1k_224_fcmae.pt",
hf_hub_id='timm/',
num_classes=0),
'convnextv2_base.fcmae': _cfgv2(
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_base_1k_224_fcmae.pt",
hf_hub_id='timm/',
num_classes=0),
'convnextv2_large.fcmae': _cfgv2(
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_large_1k_224_fcmae.pt",
hf_hub_id='timm/',
num_classes=0),
'convnextv2_huge.fcmae': _cfgv2(
url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_huge_1k_224_fcmae.pt",
hf_hub_id='timm/',
num_classes=0),
'convnextv2_small.untrained': _cfg(),
# CLIP weights, fine-tuned on in1k or in12k + in1k
'convnext_base.clip_laion2b_augreg_ft_in12k_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0),
'convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
'convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0),
'convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
'convnext_base.clip_laion2b_augreg_ft_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0),
'convnext_base.clip_laiona_augreg_ft_in1k_384': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0),
'convnext_large_mlp.clip_laion2b_augreg_ft_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0
),
'convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'
),
'convnext_xxlarge.clip_laion2b_soup_ft_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0),
'convnext_base.clip_laion2b_augreg_ft_in12k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821,
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0),
'convnext_large_mlp.clip_laion2b_soup_ft_in12k_320': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821,
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0),
'convnext_large_mlp.clip_laion2b_augreg_ft_in12k_384': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821,
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
'convnext_large_mlp.clip_laion2b_soup_ft_in12k_384': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821,
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
'convnext_xxlarge.clip_laion2b_soup_ft_in12k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821,
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0),
# CLIP original image tower weights
'convnext_base.clip_laion2b': _cfg(
hf_hub_id='laion/CLIP-convnext_base_w-laion2B-s13B-b82K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640),
'convnext_base.clip_laion2b_augreg': _cfg(
hf_hub_id='laion/CLIP-convnext_base_w-laion2B-s13B-b82K-augreg',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640),
'convnext_base.clip_laiona': _cfg(
hf_hub_id='laion/CLIP-convnext_base_w-laion_aesthetic-s13B-b82K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640),
'convnext_base.clip_laiona_320': _cfg(
hf_hub_id='laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=640),
'convnext_base.clip_laiona_augreg_320': _cfg(
hf_hub_id='laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K-augreg',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=640),
'convnext_large_mlp.clip_laion2b_augreg': _cfg(
hf_hub_id='laion/CLIP-convnext_large_d.laion2B-s26B-b102K-augreg',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=768),
'convnext_large_mlp.clip_laion2b_ft_320': _cfg(
hf_hub_id='laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=768),
'convnext_large_mlp.clip_laion2b_ft_soup_320': _cfg(
hf_hub_id='laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=768),
'convnext_xxlarge.clip_laion2b_soup': _cfg(
hf_hub_id='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=1024),
'convnext_xxlarge.clip_laion2b_rewind': _cfg(
hf_hub_id='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-rewind',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=1024),
})
@register_model
def convnext_atto(pretrained=False, **kwargs) -> ConvNeXt:
# timm femto variant (NOTE: still tweaking depths, will vary between 3-4M param, current is 3.7M
model_args = dict(depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), conv_mlp=True)
model = _create_convnext('convnext_atto', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnext_atto_ols(pretrained=False, **kwargs) -> ConvNeXt:
# timm femto variant with overlapping 3x3 conv stem, wider than non-ols femto above, current param count 3.7M
model_args = dict(depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), conv_mlp=True, stem_type='overlap_tiered')
model = _create_convnext('convnext_atto_ols', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnext_femto(pretrained=False, **kwargs) -> ConvNeXt:
# timm femto variant
model_args = dict(depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), conv_mlp=True)
model = _create_convnext('convnext_femto', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnext_femto_ols(pretrained=False, **kwargs) -> ConvNeXt:
# timm femto variant
model_args = dict(depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), conv_mlp=True, stem_type='overlap_tiered')
model = _create_convnext('convnext_femto_ols', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnext_pico(pretrained=False, **kwargs) -> ConvNeXt:
# timm pico variant
model_args = dict(depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), conv_mlp=True)
model = _create_convnext('convnext_pico', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnext_pico_ols(pretrained=False, **kwargs) -> ConvNeXt:
# timm nano variant with overlapping 3x3 conv stem
model_args = dict(depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), conv_mlp=True, stem_type='overlap_tiered')
model = _create_convnext('convnext_pico_ols', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnext_nano(pretrained=False, **kwargs) -> ConvNeXt:
# timm nano variant with standard stem and head
model_args = dict(depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), conv_mlp=True)
model = _create_convnext('convnext_nano', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnext_nano_ols(pretrained=False, **kwargs) -> ConvNeXt:
# experimental nano variant with overlapping conv stem
model_args = dict(depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), conv_mlp=True, stem_type='overlap')
model = _create_convnext('convnext_nano_ols', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnext_tiny_hnf(pretrained=False, **kwargs) -> ConvNeXt:
# experimental tiny variant with norm before pooling in head (head norm first)
model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), head_norm_first=True, conv_mlp=True)
model = _create_convnext('convnext_tiny_hnf', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnext_tiny(pretrained=False, **kwargs) -> ConvNeXt:
model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768))
model = _create_convnext('convnext_tiny', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnext_small(pretrained=False, **kwargs) -> ConvNeXt:
model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768])
model = _create_convnext('convnext_small', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnext_base(pretrained=False, **kwargs) -> ConvNeXt:
model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024])
model = _create_convnext('convnext_base', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnext_large(pretrained=False, **kwargs) -> ConvNeXt:
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536])
model = _create_convnext('convnext_large', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnext_large_mlp(pretrained=False, **kwargs) -> ConvNeXt:
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], head_hidden_size=1536)
model = _create_convnext('convnext_large_mlp', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnext_xlarge(pretrained=False, **kwargs) -> ConvNeXt:
model_args = dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048])
model = _create_convnext('convnext_xlarge', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnext_xxlarge(pretrained=False, **kwargs) -> ConvNeXt:
model_args = dict(depths=[3, 4, 30, 3], dims=[384, 768, 1536, 3072], norm_eps=kwargs.pop('norm_eps', 1e-5))
model = _create_convnext('convnext_xxlarge', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnextv2_atto(pretrained=False, **kwargs) -> ConvNeXt:
# timm femto variant (NOTE: still tweaking depths, will vary between 3-4M param, current is 3.7M
model_args = dict(
depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), use_grn=True, ls_init_value=None, conv_mlp=True)
model = _create_convnext('convnextv2_atto', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnextv2_femto(pretrained=False, **kwargs) -> ConvNeXt:
# timm femto variant
model_args = dict(
depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), use_grn=True, ls_init_value=None, conv_mlp=True)
model = _create_convnext('convnextv2_femto', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnextv2_pico(pretrained=False, **kwargs) -> ConvNeXt:
# timm pico variant
model_args = dict(
depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), use_grn=True, ls_init_value=None, conv_mlp=True)
model = _create_convnext('convnextv2_pico', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnextv2_nano(pretrained=False, **kwargs) -> ConvNeXt:
# timm nano variant with standard stem and head
model_args = dict(
depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), use_grn=True, ls_init_value=None, conv_mlp=True)
model = _create_convnext('convnextv2_nano', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnextv2_tiny(pretrained=False, **kwargs) -> ConvNeXt:
model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), use_grn=True, ls_init_value=None)
model = _create_convnext('convnextv2_tiny', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnextv2_small(pretrained=False, **kwargs) -> ConvNeXt:
model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], use_grn=True, ls_init_value=None)
model = _create_convnext('convnextv2_small', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnextv2_base(pretrained=False, **kwargs) -> ConvNeXt:
model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], use_grn=True, ls_init_value=None)
model = _create_convnext('convnextv2_base', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnextv2_large(pretrained=False, **kwargs) -> ConvNeXt:
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], use_grn=True, ls_init_value=None)
model = _create_convnext('convnextv2_large', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def convnextv2_huge(pretrained=False, **kwargs) -> ConvNeXt:
model_args = dict(depths=[3, 3, 27, 3], dims=[352, 704, 1408, 2816], use_grn=True, ls_init_value=None)
model = _create_convnext('convnextv2_huge', pretrained=pretrained, **dict(model_args, **kwargs))
return model
register_model_deprecations(__name__, {
'convnext_tiny_in22ft1k': 'convnext_tiny.fb_in22k_ft_in1k',
'convnext_small_in22ft1k': 'convnext_small.fb_in22k_ft_in1k',
'convnext_base_in22ft1k': 'convnext_base.fb_in22k_ft_in1k',
'convnext_large_in22ft1k': 'convnext_large.fb_in22k_ft_in1k',
'convnext_xlarge_in22ft1k': 'convnext_xlarge.fb_in22k_ft_in1k',
'convnext_tiny_384_in22ft1k': 'convnext_tiny.fb_in22k_ft_in1k_384',
'convnext_small_384_in22ft1k': 'convnext_small.fb_in22k_ft_in1k_384',
'convnext_base_384_in22ft1k': 'convnext_base.fb_in22k_ft_in1k_384',
'convnext_large_384_in22ft1k': 'convnext_large.fb_in22k_ft_in1k_384',
'convnext_xlarge_384_in22ft1k': 'convnext_xlarge.fb_in22k_ft_in1k_384',
'convnext_tiny_in22k': 'convnext_tiny.fb_in22k',
'convnext_small_in22k': 'convnext_small.fb_in22k',
'convnext_base_in22k': 'convnext_base.fb_in22k',
'convnext_large_in22k': 'convnext_large.fb_in22k',
'convnext_xlarge_in22k': 'convnext_xlarge.fb_in22k',
})