File size: 51,104 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
""" ConvNeXt

Papers:
* `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf
@Article{liu2022convnet,
  author  = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie},
  title   = {A ConvNet for the 2020s},
  journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year    = {2022},
}

* `ConvNeXt-V2 - Co-designing and Scaling ConvNets with Masked Autoencoders` - https://arxiv.org/abs/2301.00808
@article{Woo2023ConvNeXtV2,
  title={ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders},
  author={Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon and Saining Xie},
  year={2023},
  journal={arXiv preprint arXiv:2301.00808},
}

Original code and weights from:
* https://github.com/facebookresearch/ConvNeXt, original copyright below
* https://github.com/facebookresearch/ConvNeXt-V2, original copyright below

Model defs atto, femto, pico, nano and _ols / _hnf variants are timm originals.

Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman
"""
# ConvNeXt
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the MIT license

# ConvNeXt-V2
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree (Attribution-NonCommercial 4.0 International (CC BY-NC 4.0))
# No code was used directly from ConvNeXt-V2, however the weights are CC BY-NC 4.0 so beware if using commercially.

from collections import OrderedDict
from functools import partial
from typing import Callable, Optional, Tuple, Union

import torch
import torch.nn as nn

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
from timm.layers import trunc_normal_, AvgPool2dSame, DropPath, Mlp, GlobalResponseNormMlp, \
    LayerNorm2d, LayerNorm, create_conv2d, get_act_layer, make_divisible, to_ntuple
from timm.layers import NormMlpClassifierHead, ClassifierHead
from ._builder import build_model_with_cfg
from ._manipulate import named_apply, checkpoint_seq
from ._registry import generate_default_cfgs, register_model, register_model_deprecations

__all__ = ['ConvNeXt']  # model_registry will add each entrypoint fn to this


class Downsample(nn.Module):

    def __init__(self, in_chs, out_chs, stride=1, dilation=1):
        super().__init__()
        avg_stride = stride if dilation == 1 else 1
        if stride > 1 or dilation > 1:
            avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d
            self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False)
        else:
            self.pool = nn.Identity()

        if in_chs != out_chs:
            self.conv = create_conv2d(in_chs, out_chs, 1, stride=1)
        else:
            self.conv = nn.Identity()

    def forward(self, x):
        x = self.pool(x)
        x = self.conv(x)
        return x


class ConvNeXtBlock(nn.Module):
    """ ConvNeXt Block
    There are two equivalent implementations:
      (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
      (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back

    Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate
    choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear
    is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW.
    """

    def __init__(
            self,
            in_chs: int,
            out_chs: Optional[int] = None,
            kernel_size: int = 7,
            stride: int = 1,
            dilation: Union[int, Tuple[int, int]] = (1, 1),
            mlp_ratio: float = 4,
            conv_mlp: bool = False,
            conv_bias: bool = True,
            use_grn: bool = False,
            ls_init_value: Optional[float] = 1e-6,
            act_layer: Union[str, Callable] = 'gelu',
            norm_layer: Optional[Callable] = None,
            drop_path: float = 0.,
    ):
        """

        Args:
            in_chs: Block input channels.
            out_chs: Block output channels (same as in_chs if None).
            kernel_size: Depthwise convolution kernel size.
            stride: Stride of depthwise convolution.
            dilation: Tuple specifying input and output dilation of block.
            mlp_ratio: MLP expansion ratio.
            conv_mlp: Use 1x1 convolutions for MLP and a NCHW compatible norm layer if True.
            conv_bias: Apply bias for all convolution (linear) layers.
            use_grn: Use GlobalResponseNorm in MLP (from ConvNeXt-V2)
            ls_init_value: Layer-scale init values, layer-scale applied if not None.
            act_layer: Activation layer.
            norm_layer: Normalization layer (defaults to LN if not specified).
            drop_path: Stochastic depth probability.
        """
        super().__init__()
        out_chs = out_chs or in_chs
        dilation = to_ntuple(2)(dilation)
        act_layer = get_act_layer(act_layer)
        if not norm_layer:
            norm_layer = LayerNorm2d if conv_mlp else LayerNorm
        mlp_layer = partial(GlobalResponseNormMlp if use_grn else Mlp, use_conv=conv_mlp)
        self.use_conv_mlp = conv_mlp
        self.conv_dw = create_conv2d(
            in_chs,
            out_chs,
            kernel_size=kernel_size,
            stride=stride,
            dilation=dilation[0],
            depthwise=True,
            bias=conv_bias,
        )
        self.norm = norm_layer(out_chs)
        self.mlp = mlp_layer(out_chs, int(mlp_ratio * out_chs), act_layer=act_layer)
        self.gamma = nn.Parameter(ls_init_value * torch.ones(out_chs)) if ls_init_value is not None else None
        if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]:
            self.shortcut = Downsample(in_chs, out_chs, stride=stride, dilation=dilation[0])
        else:
            self.shortcut = nn.Identity()
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        shortcut = x
        x = self.conv_dw(x)
        if self.use_conv_mlp:
            x = self.norm(x)
            x = self.mlp(x)
        else:
            x = x.permute(0, 2, 3, 1)
            x = self.norm(x)
            x = self.mlp(x)
            x = x.permute(0, 3, 1, 2)
        if self.gamma is not None:
            x = x.mul(self.gamma.reshape(1, -1, 1, 1))

        x = self.drop_path(x) + self.shortcut(shortcut)
        return x


class ConvNeXtStage(nn.Module):

    def __init__(
            self,
            in_chs,
            out_chs,
            kernel_size=7,
            stride=2,
            depth=2,
            dilation=(1, 1),
            drop_path_rates=None,
            ls_init_value=1.0,
            conv_mlp=False,
            conv_bias=True,
            use_grn=False,
            act_layer='gelu',
            norm_layer=None,
            norm_layer_cl=None
    ):
        super().__init__()
        self.grad_checkpointing = False

        if in_chs != out_chs or stride > 1 or dilation[0] != dilation[1]:
            ds_ks = 2 if stride > 1 or dilation[0] != dilation[1] else 1
            pad = 'same' if dilation[1] > 1 else 0  # same padding needed if dilation used
            self.downsample = nn.Sequential(
                norm_layer(in_chs),
                create_conv2d(
                    in_chs,
                    out_chs,
                    kernel_size=ds_ks,
                    stride=stride,
                    dilation=dilation[0],
                    padding=pad,
                    bias=conv_bias,
                ),
            )
            in_chs = out_chs
        else:
            self.downsample = nn.Identity()

        drop_path_rates = drop_path_rates or [0.] * depth
        stage_blocks = []
        for i in range(depth):
            stage_blocks.append(ConvNeXtBlock(
                in_chs=in_chs,
                out_chs=out_chs,
                kernel_size=kernel_size,
                dilation=dilation[1],
                drop_path=drop_path_rates[i],
                ls_init_value=ls_init_value,
                conv_mlp=conv_mlp,
                conv_bias=conv_bias,
                use_grn=use_grn,
                act_layer=act_layer,
                norm_layer=norm_layer if conv_mlp else norm_layer_cl,
            ))
            in_chs = out_chs
        self.blocks = nn.Sequential(*stage_blocks)

    def forward(self, x):
        x = self.downsample(x)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.blocks, x)
        else:
            x = self.blocks(x)
        return x


class ConvNeXt(nn.Module):
    r""" ConvNeXt
        A PyTorch impl of : `A ConvNet for the 2020s`  - https://arxiv.org/pdf/2201.03545.pdf
    """

    def __init__(
            self,
            in_chans: int = 3,
            num_classes: int = 1000,
            global_pool: str = 'avg',
            output_stride: int = 32,
            depths: Tuple[int, ...] = (3, 3, 9, 3),
            dims: Tuple[int, ...] = (96, 192, 384, 768),
            kernel_sizes: Union[int, Tuple[int, ...]] = 7,
            ls_init_value: Optional[float] = 1e-6,
            stem_type: str = 'patch',
            patch_size: int = 4,
            head_init_scale: float = 1.,
            head_norm_first: bool = False,
            head_hidden_size: Optional[int] = None,
            conv_mlp: bool = False,
            conv_bias: bool = True,
            use_grn: bool = False,
            act_layer: Union[str, Callable] = 'gelu',
            norm_layer: Optional[Union[str, Callable]] = None,
            norm_eps: Optional[float] = None,
            drop_rate: float = 0.,
            drop_path_rate: float = 0.,
            out_stage3: bool = False
    ):
        """
        Args:
            in_chans: Number of input image channels.
            num_classes: Number of classes for classification head.
            global_pool: Global pooling type.
            output_stride: Output stride of network, one of (8, 16, 32).
            depths: Number of blocks at each stage.
            dims: Feature dimension at each stage.
            kernel_sizes: Depthwise convolution kernel-sizes for each stage.
            ls_init_value: Init value for Layer Scale, disabled if None.
            stem_type: Type of stem.
            patch_size: Stem patch size for patch stem.
            head_init_scale: Init scaling value for classifier weights and biases.
            head_norm_first: Apply normalization before global pool + head.
            head_hidden_size: Size of MLP hidden layer in head if not None and head_norm_first == False.
            conv_mlp: Use 1x1 conv in MLP, improves speed for small networks w/ chan last.
            conv_bias: Use bias layers w/ all convolutions.
            use_grn: Use Global Response Norm (ConvNeXt-V2) in MLP.
            act_layer: Activation layer type.
            norm_layer: Normalization layer type.
            drop_rate: Head pre-classifier dropout rate.
            drop_path_rate: Stochastic depth drop rate.
        """
        super().__init__()
        self.out_stage3 = out_stage3
        assert output_stride in (8, 16, 32)
        kernel_sizes = to_ntuple(4)(kernel_sizes)
        if norm_layer is None:
            norm_layer = LayerNorm2d
            norm_layer_cl = norm_layer if conv_mlp else LayerNorm
            if norm_eps is not None:
                norm_layer = partial(norm_layer, eps=norm_eps)
                norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)
        else:
            assert conv_mlp,\
                'If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input'
            norm_layer_cl = norm_layer
            if norm_eps is not None:
                norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)

        self.num_classes = num_classes
        self.drop_rate = drop_rate
        self.feature_info = []

        assert stem_type in ('patch', 'overlap', 'overlap_tiered')
        if stem_type == 'patch':
            # NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4
            self.stem = nn.Sequential(
                nn.Conv2d(in_chans, dims[0], kernel_size=patch_size, stride=patch_size, bias=conv_bias),
                norm_layer(dims[0]),
            )
            stem_stride = patch_size
        else:
            mid_chs = make_divisible(dims[0] // 2) if 'tiered' in stem_type else dims[0]
            self.stem = nn.Sequential(
                nn.Conv2d(in_chans, mid_chs, kernel_size=3, stride=2, padding=1, bias=conv_bias),
                nn.Conv2d(mid_chs, dims[0], kernel_size=3, stride=2, padding=1, bias=conv_bias),
                norm_layer(dims[0]),
            )
            stem_stride = 4

        self.stages = nn.Sequential()
        dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
        stages = []
        prev_chs = dims[0]
        curr_stride = stem_stride
        dilation = 1
        # 4 feature resolution stages, each consisting of multiple residual blocks
        for i in range(4):
            stride = 2 if curr_stride == 2 or i > 0 else 1 #2
            if curr_stride >= output_stride and stride > 1:
                dilation *= stride
                stride = 1
            curr_stride *= stride #16*2
            first_dilation = 1 if dilation in (1, 2) else 2 #1
            out_chs = dims[i] #1536
            stages.append(ConvNeXtStage(
                prev_chs,
                out_chs,
                kernel_size=kernel_sizes[i],
                stride=stride,
                dilation=(first_dilation, dilation),
                depth=depths[i],
                drop_path_rates=dp_rates[i],
                ls_init_value=ls_init_value,
                conv_mlp=conv_mlp,
                conv_bias=conv_bias,
                use_grn=use_grn,
                act_layer=act_layer,
                norm_layer=norm_layer,
                norm_layer_cl=norm_layer_cl,
            ))
            prev_chs = out_chs
            # NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2
            self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')]
        self.stages = nn.Sequential(*stages)
        self.num_features = prev_chs

        # if head_norm_first == true, norm -> global pool -> fc ordering, like most other nets
        # otherwise pool -> norm -> fc, the default ConvNeXt ordering (pretrained FB weights)
        if head_norm_first:
            assert not head_hidden_size
            self.norm_pre = norm_layer(self.num_features)
            self.head = ClassifierHead(
                self.num_features,
                num_classes,
                pool_type=global_pool,
                drop_rate=self.drop_rate,
            )
        else:
            self.norm_pre = nn.Identity()
            self.head = NormMlpClassifierHead(
                self.num_features,
                num_classes,
                hidden_size=head_hidden_size,
                pool_type=global_pool,
                drop_rate=self.drop_rate,
                norm_layer=norm_layer,
                act_layer='gelu',
            )
        named_apply(partial(_init_weights, head_init_scale=head_init_scale), self)

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        return dict(
            stem=r'^stem',
            blocks=r'^stages\.(\d+)' if coarse else [
                (r'^stages\.(\d+)\.downsample', (0,)),  # blocks
                (r'^stages\.(\d+)\.blocks\.(\d+)', None),
                (r'^norm_pre', (99999,))
            ]
        )

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        for s in self.stages:
            s.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self):
        return self.head.fc

    def reset_classifier(self, num_classes=0, global_pool=None):
        self.head.reset(num_classes, global_pool)

    def forward_features_out_stage3(self, x):
        # x = self.stem(x)
        # x = self.stages(x)
        # x = self.norm_pre(x)
        x = self.stem(x)
        for i, stage in enumerate(self.stages):
            x = stage(x)
            if i == 2:
                out_stage3 = x
                # y = x.detach()
                # # my_gp = nn.AdaptiveAvgPool2d(1)
                # # y = my_gp(y)
                # # print('in model: ', y.shape)
                # my_gp = nn.AdaptiveMaxPool2d(1)
                # y = my_gp(y)
                # y = y.reshape(y.size(0), -1)
                
            
        x = self.norm_pre(x)
        return x,out_stage3
    def forward_features(self,x):
        x = self.stem(x)
        x = self.stages(x)
        x = self.norm_pre(x)
        return x
    def forward_head(self, x, pre_logits: bool = False):
        return self.head(x, pre_logits=True) if pre_logits else self.head(x)

    def forward(self, x):
        # x = self.forward_features(x)
        # x = self.forward_head(x)
        if self.out_stage3:
            out_stage4,out_stage3 = self.forward_features_out_stage3(x)
            # x = self.forward_head(x)
            # x = self.forward_head(x)
            return out_stage4,out_stage3
        else:
            x = self.forward_features(x)
            x = self.forward_head(x)
            return x
    # def forward(self, x):
        # x = self.forward_features(x)
        # x = self.forward_head(x)
    #     return x


def _init_weights(module, name=None, head_init_scale=1.0):
    if isinstance(module, nn.Conv2d):
        trunc_normal_(module.weight, std=.02)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Linear):
        trunc_normal_(module.weight, std=.02)
        nn.init.zeros_(module.bias)
        if name and 'head.' in name:
            module.weight.data.mul_(head_init_scale)
            module.bias.data.mul_(head_init_scale)


def checkpoint_filter_fn(state_dict, model):
    """ Remap FB checkpoints -> timm """
    if 'head.norm.weight' in state_dict or 'norm_pre.weight' in state_dict:
        return state_dict  # non-FB checkpoint
    if 'model' in state_dict:
        state_dict = state_dict['model']

    out_dict = {}
    if 'visual.trunk.stem.0.weight' in state_dict:
        out_dict = {k.replace('visual.trunk.', ''): v for k, v in state_dict.items() if k.startswith('visual.trunk.')}
        if 'visual.head.proj.weight' in state_dict:
            out_dict['head.fc.weight'] = state_dict['visual.head.proj.weight']
            out_dict['head.fc.bias'] = torch.zeros(state_dict['visual.head.proj.weight'].shape[0])
        elif 'visual.head.mlp.fc1.weight' in state_dict:
            out_dict['head.pre_logits.fc.weight'] = state_dict['visual.head.mlp.fc1.weight']
            out_dict['head.pre_logits.fc.bias'] = state_dict['visual.head.mlp.fc1.bias']
            out_dict['head.fc.weight'] = state_dict['visual.head.mlp.fc2.weight']
            out_dict['head.fc.bias'] = torch.zeros(state_dict['visual.head.mlp.fc2.weight'].shape[0])
        return out_dict

    import re
    for k, v in state_dict.items():
        k = k.replace('downsample_layers.0.', 'stem.')
        k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k)
        k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k)
        k = k.replace('dwconv', 'conv_dw')
        k = k.replace('pwconv', 'mlp.fc')
        if 'grn' in k:
            k = k.replace('grn.beta', 'mlp.grn.bias')
            k = k.replace('grn.gamma', 'mlp.grn.weight')
            v = v.reshape(v.shape[-1])
        k = k.replace('head.', 'head.fc.')
        if k.startswith('norm.'):
            k = k.replace('norm', 'head.norm')
        if v.ndim == 2 and 'head' not in k:
            model_shape = model.state_dict()[k].shape
            v = v.reshape(model_shape)
        out_dict[k] = v

    return out_dict


def _create_convnext(variant, pretrained=False, **kwargs):
    if kwargs.get('pretrained_cfg', '') == 'fcmae':
        # NOTE fcmae pretrained weights have no classifier or final norm-layer (`head.norm`)
        # This is workaround loading with num_classes=0 w/o removing norm-layer.
        kwargs.setdefault('pretrained_strict', False)

    model = build_model_with_cfg(
        ConvNeXt, variant, pretrained,
        pretrained_filter_fn=checkpoint_filter_fn,
        feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True),
        **kwargs)
    return model


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
        'crop_pct': 0.875, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'stem.0', 'classifier': 'head.fc',
        **kwargs
    }


def _cfgv2(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
        'crop_pct': 0.875, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'stem.0', 'classifier': 'head.fc',
        'license': 'cc-by-nc-4.0', 'paper_ids': 'arXiv:2301.00808',
        'paper_name': 'ConvNeXt-V2: Co-designing and Scaling ConvNets with Masked Autoencoders',
        'origin_url': 'https://github.com/facebookresearch/ConvNeXt-V2',
        **kwargs
    }


default_cfgs = generate_default_cfgs({
    # timm specific variants
    'convnext_tiny.in12k_ft_in1k': _cfg(
        hf_hub_id='timm/',
        crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'convnext_small.in12k_ft_in1k': _cfg(
        hf_hub_id='timm/',
        crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),

    'convnext_atto.d2_in1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_atto_d2-01bb0f51.pth',
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=0.95),
    'convnext_atto_ols.a2_in1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_atto_ols_a2-78d1c8f3.pth',
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=0.95),
    'convnext_femto.d1_in1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_femto_d1-d71d5b4c.pth',
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=0.95),
    'convnext_femto_ols.d1_in1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_femto_ols_d1-246bf2ed.pth',
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=0.95),
    'convnext_pico.d1_in1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_pico_d1-10ad7f0d.pth',
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=0.95),
    'convnext_pico_ols.d1_in1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_pico_ols_d1-611f0ca7.pth',
        hf_hub_id='timm/',
        crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'convnext_nano.in12k_ft_in1k': _cfg(
        hf_hub_id='timm/',
        crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'convnext_nano.d1h_in1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_nano_d1h-7eb4bdea.pth',
        hf_hub_id='timm/',
        crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'convnext_nano_ols.d1h_in1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_nano_ols_d1h-ae424a9a.pth',
        hf_hub_id='timm/',
        crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'convnext_tiny_hnf.a2h_in1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_tiny_hnf_a2h-ab7e9df2.pth',
        hf_hub_id='timm/',
        crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),

    'convnext_tiny.in12k_ft_in1k_384': _cfg(
        hf_hub_id='timm/',
       input_size=(3, 384, 384), pool_size=(12, 12),  crop_pct=1.0, crop_mode='squash'),
    'convnext_small.in12k_ft_in1k_384': _cfg(
        hf_hub_id='timm/',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0,  crop_mode='squash'),

    'convnext_nano.in12k': _cfg(
        hf_hub_id='timm/',
        crop_pct=0.95, num_classes=11821),
    'convnext_tiny.in12k': _cfg(
        hf_hub_id='timm/',
        crop_pct=0.95, num_classes=11821),
    'convnext_small.in12k': _cfg(
        hf_hub_id='timm/',
        crop_pct=0.95, num_classes=11821),

    'convnext_tiny.fb_in22k_ft_in1k': _cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_1k_224.pth',
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'convnext_small.fb_in22k_ft_in1k': _cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_1k_224.pth',
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'convnext_base.fb_in22k_ft_in1k': _cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_224.pth',
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'convnext_large.fb_in22k_ft_in1k': _cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_224.pth',
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'convnext_xlarge.fb_in22k_ft_in1k': _cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_224_ema.pth',
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),

    'convnext_tiny.fb_in1k': _cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth",
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'convnext_small.fb_in1k': _cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth",
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'convnext_base.fb_in1k': _cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth",
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'convnext_large.fb_in1k': _cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth",
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),

    'convnext_tiny.fb_in22k_ft_in1k_384': _cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_1k_384.pth',
        hf_hub_id='timm/',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
    'convnext_small.fb_in22k_ft_in1k_384': _cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_1k_384.pth',
        hf_hub_id='timm/',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
    'convnext_base.fb_in22k_ft_in1k_384': _cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_384.pth',
        hf_hub_id='timm/',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
    'convnext_large.fb_in22k_ft_in1k_384': _cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_384.pth',
        hf_hub_id='timm/',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
    'convnext_xlarge.fb_in22k_ft_in1k_384': _cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_384_ema.pth',
        hf_hub_id='timm/',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),

    'convnext_tiny.fb_in22k': _cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_224.pth",
        hf_hub_id='timm/',
        num_classes=21841),
    'convnext_small.fb_in22k': _cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_224.pth",
        hf_hub_id='timm/',
        num_classes=21841),
    'convnext_base.fb_in22k': _cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth",
        hf_hub_id='timm/',
        num_classes=21841),
    'convnext_large.fb_in22k': _cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth",
        hf_hub_id='timm/',
        num_classes=21841),
    'convnext_xlarge.fb_in22k': _cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth",
        hf_hub_id='timm/',
        num_classes=21841),

    'convnextv2_nano.fcmae_ft_in22k_in1k': _cfgv2(
        url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_224_ema.pt',
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'convnextv2_nano.fcmae_ft_in22k_in1k_384': _cfgv2(
        url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_384_ema.pt',
        hf_hub_id='timm/',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
    'convnextv2_tiny.fcmae_ft_in22k_in1k': _cfgv2(
        url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_224_ema.pt",
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'convnextv2_tiny.fcmae_ft_in22k_in1k_384': _cfgv2(
        url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_384_ema.pt",
        hf_hub_id='timm/',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
    'convnextv2_base.fcmae_ft_in22k_in1k': _cfgv2(
        url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_224_ema.pt",
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'convnextv2_base.fcmae_ft_in22k_in1k_384': _cfgv2(
        url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_384_ema.pt",
        hf_hub_id='timm/',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
    'convnextv2_large.fcmae_ft_in22k_in1k': _cfgv2(
        url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_224_ema.pt",
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'convnextv2_large.fcmae_ft_in22k_in1k_384': _cfgv2(
        url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_384_ema.pt",
        hf_hub_id='timm/',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
    'convnextv2_huge.fcmae_ft_in22k_in1k_384': _cfgv2(
        url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_384_ema.pt",
        hf_hub_id='timm/',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
    'convnextv2_huge.fcmae_ft_in22k_in1k_512': _cfgv2(
        url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_512_ema.pt",
        hf_hub_id='timm/',
        input_size=(3, 512, 512), pool_size=(15, 15), crop_pct=1.0, crop_mode='squash'),

    'convnextv2_atto.fcmae_ft_in1k': _cfgv2(
        url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_atto_1k_224_ema.pt',
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=0.95),
    'convnextv2_femto.fcmae_ft_in1k': _cfgv2(
        url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_femto_1k_224_ema.pt',
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=0.95),
    'convnextv2_pico.fcmae_ft_in1k': _cfgv2(
        url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_pico_1k_224_ema.pt',
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=0.95),
    'convnextv2_nano.fcmae_ft_in1k': _cfgv2(
        url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_nano_1k_224_ema.pt',
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'convnextv2_tiny.fcmae_ft_in1k': _cfgv2(
        url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_tiny_1k_224_ema.pt",
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'convnextv2_base.fcmae_ft_in1k': _cfgv2(
        url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_base_1k_224_ema.pt",
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'convnextv2_large.fcmae_ft_in1k': _cfgv2(
        url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_large_1k_224_ema.pt",
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'convnextv2_huge.fcmae_ft_in1k': _cfgv2(
        url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_huge_1k_224_ema.pt",
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),

    'convnextv2_atto.fcmae': _cfgv2(
        url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_atto_1k_224_fcmae.pt',
        hf_hub_id='timm/',
        num_classes=0),
    'convnextv2_femto.fcmae': _cfgv2(
        url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_femto_1k_224_fcmae.pt',
        hf_hub_id='timm/',
        num_classes=0),
    'convnextv2_pico.fcmae': _cfgv2(
        url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_pico_1k_224_fcmae.pt',
        hf_hub_id='timm/',
        num_classes=0),
    'convnextv2_nano.fcmae': _cfgv2(
        url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_nano_1k_224_fcmae.pt',
        hf_hub_id='timm/',
        num_classes=0),
    'convnextv2_tiny.fcmae': _cfgv2(
        url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_tiny_1k_224_fcmae.pt",
        hf_hub_id='timm/',
        num_classes=0),
    'convnextv2_base.fcmae': _cfgv2(
        url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_base_1k_224_fcmae.pt",
        hf_hub_id='timm/',
        num_classes=0),
    'convnextv2_large.fcmae': _cfgv2(
        url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_large_1k_224_fcmae.pt",
        hf_hub_id='timm/',
        num_classes=0),
    'convnextv2_huge.fcmae': _cfgv2(
        url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_huge_1k_224_fcmae.pt",
        hf_hub_id='timm/',
        num_classes=0),

    'convnextv2_small.untrained': _cfg(),

    # CLIP weights, fine-tuned on in1k or in12k + in1k
    'convnext_base.clip_laion2b_augreg_ft_in12k_in1k': _cfg(
        hf_hub_id='timm/',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
        input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0),
    'convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384': _cfg(
        hf_hub_id='timm/',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
    'convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320': _cfg(
        hf_hub_id='timm/',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
        input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0),
    'convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384': _cfg(
        hf_hub_id='timm/',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),

    'convnext_base.clip_laion2b_augreg_ft_in1k': _cfg(
        hf_hub_id='timm/',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
        input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0),
    'convnext_base.clip_laiona_augreg_ft_in1k_384': _cfg(
        hf_hub_id='timm/',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0),
    'convnext_large_mlp.clip_laion2b_augreg_ft_in1k': _cfg(
        hf_hub_id='timm/',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
        input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0
    ),
    'convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384': _cfg(
        hf_hub_id='timm/',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'
    ),
    'convnext_xxlarge.clip_laion2b_soup_ft_in1k': _cfg(
        hf_hub_id='timm/',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
        input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0),

    'convnext_base.clip_laion2b_augreg_ft_in12k': _cfg(
        hf_hub_id='timm/',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821,
        input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0),
    'convnext_large_mlp.clip_laion2b_soup_ft_in12k_320': _cfg(
        hf_hub_id='timm/',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821,
        input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0),
    'convnext_large_mlp.clip_laion2b_augreg_ft_in12k_384': _cfg(
        hf_hub_id='timm/',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821,
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
    'convnext_large_mlp.clip_laion2b_soup_ft_in12k_384': _cfg(
        hf_hub_id='timm/',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821,
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
    'convnext_xxlarge.clip_laion2b_soup_ft_in12k': _cfg(
        hf_hub_id='timm/',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821,
        input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0),

    # CLIP original image tower weights
    'convnext_base.clip_laion2b': _cfg(
        hf_hub_id='laion/CLIP-convnext_base_w-laion2B-s13B-b82K',
        hf_hub_filename='open_clip_pytorch_model.bin',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
        input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640),
    'convnext_base.clip_laion2b_augreg': _cfg(
        hf_hub_id='laion/CLIP-convnext_base_w-laion2B-s13B-b82K-augreg',
        hf_hub_filename='open_clip_pytorch_model.bin',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
        input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640),
    'convnext_base.clip_laiona': _cfg(
        hf_hub_id='laion/CLIP-convnext_base_w-laion_aesthetic-s13B-b82K',
        hf_hub_filename='open_clip_pytorch_model.bin',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
        input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640),
    'convnext_base.clip_laiona_320': _cfg(
        hf_hub_id='laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K',
        hf_hub_filename='open_clip_pytorch_model.bin',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
        input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=640),
    'convnext_base.clip_laiona_augreg_320': _cfg(
        hf_hub_id='laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K-augreg',
        hf_hub_filename='open_clip_pytorch_model.bin',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
        input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=640),
    'convnext_large_mlp.clip_laion2b_augreg': _cfg(
        hf_hub_id='laion/CLIP-convnext_large_d.laion2B-s26B-b102K-augreg',
        hf_hub_filename='open_clip_pytorch_model.bin',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
        input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=768),
    'convnext_large_mlp.clip_laion2b_ft_320': _cfg(
        hf_hub_id='laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft',
        hf_hub_filename='open_clip_pytorch_model.bin',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
        input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=768),
    'convnext_large_mlp.clip_laion2b_ft_soup_320': _cfg(
        hf_hub_id='laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup',
        hf_hub_filename='open_clip_pytorch_model.bin',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
        input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=768),
    'convnext_xxlarge.clip_laion2b_soup': _cfg(
        hf_hub_id='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup',
        hf_hub_filename='open_clip_pytorch_model.bin',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
        input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=1024),
    'convnext_xxlarge.clip_laion2b_rewind': _cfg(
        hf_hub_id='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-rewind',
        hf_hub_filename='open_clip_pytorch_model.bin',
        mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
        input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=1024),
})


@register_model
def convnext_atto(pretrained=False, **kwargs) -> ConvNeXt:
    # timm femto variant (NOTE: still tweaking depths, will vary between 3-4M param, current is 3.7M
    model_args = dict(depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), conv_mlp=True)
    model = _create_convnext('convnext_atto', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnext_atto_ols(pretrained=False, **kwargs) -> ConvNeXt:
    # timm femto variant with overlapping 3x3 conv stem, wider than non-ols femto above, current param count 3.7M
    model_args = dict(depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), conv_mlp=True, stem_type='overlap_tiered')
    model = _create_convnext('convnext_atto_ols', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnext_femto(pretrained=False, **kwargs) -> ConvNeXt:
    # timm femto variant
    model_args = dict(depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), conv_mlp=True)
    model = _create_convnext('convnext_femto', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnext_femto_ols(pretrained=False, **kwargs) -> ConvNeXt:
    # timm femto variant
    model_args = dict(depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), conv_mlp=True, stem_type='overlap_tiered')
    model = _create_convnext('convnext_femto_ols', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnext_pico(pretrained=False, **kwargs) -> ConvNeXt:
    # timm pico variant
    model_args = dict(depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), conv_mlp=True)
    model = _create_convnext('convnext_pico', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnext_pico_ols(pretrained=False, **kwargs) -> ConvNeXt:
    # timm nano variant with overlapping 3x3 conv stem
    model_args = dict(depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), conv_mlp=True,  stem_type='overlap_tiered')
    model = _create_convnext('convnext_pico_ols', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnext_nano(pretrained=False, **kwargs) -> ConvNeXt:
    # timm nano variant with standard stem and head
    model_args = dict(depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), conv_mlp=True)
    model = _create_convnext('convnext_nano', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnext_nano_ols(pretrained=False, **kwargs) -> ConvNeXt:
    # experimental nano variant with overlapping conv stem
    model_args = dict(depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), conv_mlp=True, stem_type='overlap')
    model = _create_convnext('convnext_nano_ols', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnext_tiny_hnf(pretrained=False, **kwargs) -> ConvNeXt:
    # experimental tiny variant with norm before pooling in head (head norm first)
    model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), head_norm_first=True, conv_mlp=True)
    model = _create_convnext('convnext_tiny_hnf', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnext_tiny(pretrained=False, **kwargs) -> ConvNeXt:
    model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768))
    model = _create_convnext('convnext_tiny', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnext_small(pretrained=False, **kwargs) -> ConvNeXt:
    model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768])
    model = _create_convnext('convnext_small', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnext_base(pretrained=False, **kwargs) -> ConvNeXt:
    model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024])
    model = _create_convnext('convnext_base', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnext_large(pretrained=False, **kwargs) -> ConvNeXt:
    model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536])
    model = _create_convnext('convnext_large', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnext_large_mlp(pretrained=False, **kwargs) -> ConvNeXt:
    model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], head_hidden_size=1536)
    model = _create_convnext('convnext_large_mlp', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnext_xlarge(pretrained=False, **kwargs) -> ConvNeXt:
    model_args = dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048])
    model = _create_convnext('convnext_xlarge', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnext_xxlarge(pretrained=False, **kwargs) -> ConvNeXt:
    model_args = dict(depths=[3, 4, 30, 3], dims=[384, 768, 1536, 3072], norm_eps=kwargs.pop('norm_eps', 1e-5))
    model = _create_convnext('convnext_xxlarge', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnextv2_atto(pretrained=False, **kwargs) -> ConvNeXt:
    # timm femto variant (NOTE: still tweaking depths, will vary between 3-4M param, current is 3.7M
    model_args = dict(
        depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), use_grn=True, ls_init_value=None, conv_mlp=True)
    model = _create_convnext('convnextv2_atto', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnextv2_femto(pretrained=False, **kwargs) -> ConvNeXt:
    # timm femto variant
    model_args = dict(
        depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), use_grn=True, ls_init_value=None, conv_mlp=True)
    model = _create_convnext('convnextv2_femto', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnextv2_pico(pretrained=False, **kwargs) -> ConvNeXt:
    # timm pico variant
    model_args = dict(
        depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), use_grn=True, ls_init_value=None, conv_mlp=True)
    model = _create_convnext('convnextv2_pico', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnextv2_nano(pretrained=False, **kwargs) -> ConvNeXt:
    # timm nano variant with standard stem and head
    model_args = dict(
        depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), use_grn=True, ls_init_value=None, conv_mlp=True)
    model = _create_convnext('convnextv2_nano', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnextv2_tiny(pretrained=False, **kwargs) -> ConvNeXt:
    model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), use_grn=True, ls_init_value=None)
    model = _create_convnext('convnextv2_tiny', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnextv2_small(pretrained=False, **kwargs) -> ConvNeXt:
    model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], use_grn=True, ls_init_value=None)
    model = _create_convnext('convnextv2_small', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnextv2_base(pretrained=False, **kwargs) -> ConvNeXt:
    model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], use_grn=True, ls_init_value=None)
    model = _create_convnext('convnextv2_base', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnextv2_large(pretrained=False, **kwargs) -> ConvNeXt:
    model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], use_grn=True, ls_init_value=None)
    model = _create_convnext('convnextv2_large', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def convnextv2_huge(pretrained=False, **kwargs) -> ConvNeXt:
    model_args = dict(depths=[3, 3, 27, 3], dims=[352, 704, 1408, 2816], use_grn=True, ls_init_value=None)
    model = _create_convnext('convnextv2_huge', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


register_model_deprecations(__name__, {
    'convnext_tiny_in22ft1k': 'convnext_tiny.fb_in22k_ft_in1k',
    'convnext_small_in22ft1k': 'convnext_small.fb_in22k_ft_in1k',
    'convnext_base_in22ft1k': 'convnext_base.fb_in22k_ft_in1k',
    'convnext_large_in22ft1k': 'convnext_large.fb_in22k_ft_in1k',
    'convnext_xlarge_in22ft1k': 'convnext_xlarge.fb_in22k_ft_in1k',
    'convnext_tiny_384_in22ft1k': 'convnext_tiny.fb_in22k_ft_in1k_384',
    'convnext_small_384_in22ft1k': 'convnext_small.fb_in22k_ft_in1k_384',
    'convnext_base_384_in22ft1k': 'convnext_base.fb_in22k_ft_in1k_384',
    'convnext_large_384_in22ft1k': 'convnext_large.fb_in22k_ft_in1k_384',
    'convnext_xlarge_384_in22ft1k': 'convnext_xlarge.fb_in22k_ft_in1k_384',
    'convnext_tiny_in22k': 'convnext_tiny.fb_in22k',
    'convnext_small_in22k': 'convnext_small.fb_in22k',
    'convnext_base_in22k': 'convnext_base.fb_in22k',
    'convnext_large_in22k': 'convnext_large.fb_in22k',
    'convnext_xlarge_in22k': 'convnext_xlarge.fb_in22k',
})