V2 / extract_questions.py
pengcc1's picture
Upload extract_questions.py with huggingface_hub
a7d4c7b verified
raw
history blame
8.27 kB
import os
import json
import shutil
# 读取关键词文件并构建关键词映射字典
keyword_file = '/mnt/petrelfs/chenpengcheng/benchmark_preprocess/GMAI-MMbench-CoT/output_multi_column.txt'
keyword_dict = {}
with open(keyword_file, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if not line:
continue # 跳过空行
parts = line.split(',')
if len(parts) != 4:
print(f"格式错误,跳过此行:{line}")
continue
keyword, department, task, modality = [p.strip() for p in parts]
keyword_dict[keyword] = {
'department': department,
'task': task,
'modality': modality
}
print(f"总共加载了 {len(keyword_dict)} 个关键词。")
# 定义需要处理的科室列表
departments = [
'Cardiovascular Surgery',
'Dermatology',
'Endocrinology',
'Gastroenterology and Hepatology',
'General Surgery',
'Hematology',
'Infectious Diseases',
'Laboratory Medicine and Pathology',
'Nephrology and Hypertension',
'Neurosurgery',
'Obstetrics and Gynecology',
'Oncology (Medical)',
'Ophthalmology',
'Orthopedic Surgery',
'Otolaryngology (ENT)/Head and Neck Surgery',
'Pulmonary Medicine',
'Sports Medicine',
'Urology'
]
# 创建科室到目录名称的映射,处理特殊情况
def get_department_dir_name(department):
if department == 'Otolaryngology (ENT)/Head and Neck Surgery':
return 'Otolaryngology (ENT)'
else:
return department
# 将科室列表转换为集合,方便查找
departments_set = set(departments)
# 定义源目录列表
source_dirs = [
'/mnt/petrelfs/chenpengcheng/benchmark_preprocess/GMAI/cls_2d',
'/mnt/petrelfs/chenpengcheng/benchmark_preprocess/GMAI/det_2d',
'/mnt/petrelfs/chenpengcheng/benchmark_preprocess/GMAI/semantic_seg_2d',
'/mnt/petrelfs/chenpengcheng/benchmark_preprocess/GMAI/semantic_seg_3d'
]
# 定义目标基础目录
destination_root = '/mnt/petrelfs/chenpengcheng/benchmark_preprocess/GMAI-MMbench-CoT'
# 用于统计和调试
total_files_processed = 0
files_matched = 0
images_copied = 0
# 用于统计每个科室的匹配文件数
department_file_counts = {dept: 0 for dept in departments}
# 要处理的图片键列表
image_keys = ['img_mask_path', 'img_contour_path', 'img_bbox_path', 'img_path']
# 遍历每个源目录
for source_dir in source_dirs:
print(f"正在遍历目录:{source_dir}")
for root, dirs, files in os.walk(source_dir):
for file in files:
if file.endswith('.json'):
total_files_processed += 1
source_file_path = os.path.join(root, file)
try:
with open(source_file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
answer_letter = data.get('answer', '').strip()
options = data.get('options', [])
if not answer_letter or not options:
print(f"文件缺少 'answer' 或 'options' 字段,跳过:{source_file_path}")
continue
# 创建选项字典,映射字母到选项文本
option_dict = {}
for opt in options:
if len(opt) > 2 and opt[1] == '.':
opt_letter = opt[0]
opt_text = opt[3:].strip()
option_dict[opt_letter] = opt_text
else:
print(f"选项格式错误,文件:{source_file_path},选项:{opt}")
# 获取关键词
keyword = option_dict.get(answer_letter)
if not keyword:
print(f"答案字母 '{answer_letter}' 在选项中未找到,文件:{source_file_path}")
continue
print(f"处理文件:{source_file_path}")
print(f"关键词:'{keyword}'")
# 检查关键词是否在关键词字典中
if keyword in keyword_dict:
department_info = keyword_dict[keyword]
department = department_info['department']
print(f"关键词 '{keyword}' 的科室为:'{department}'")
if department in departments_set:
files_matched += 1
department_dir_name = get_department_dir_name(department)
destination_base = os.path.join(destination_root, department_dir_name)
# 构造目标文件路径
relative_path = os.path.relpath(source_file_path, '/mnt/petrelfs/chenpengcheng/benchmark_preprocess/GMAI')
destination_file_path = os.path.join(destination_base, relative_path)
# 创建目标目录(如果不存在)
destination_dir = os.path.dirname(destination_file_path)
if not os.path.exists(destination_dir):
os.makedirs(destination_dir)
print(f"创建目录:{destination_dir}")
# 复制JSON文件
shutil.copy2(source_file_path, destination_file_path)
print(f"已复制文件到:{destination_file_path}")
# 处理并复制图片
for image_key in image_keys:
if image_key in data:
image_path = data[image_key]
# 图片路径是相对于 source_dir + '/images' 的
source_image_path = os.path.join(source_dir, 'images', image_path)
if not os.path.exists(source_image_path):
print(f"源图片不存在,跳过:{source_image_path}")
continue
# 构造相对路径,从 GMAI 之后开始,包括 'images' 目录
relative_image_path = os.path.relpath(source_image_path, '/mnt/petrelfs/chenpengcheng/benchmark_preprocess/GMAI')
# 构造目标图片路径
destination_image_path = os.path.join(destination_base, relative_image_path)
destination_image_dir = os.path.dirname(destination_image_path)
if not os.path.exists(destination_image_dir):
os.makedirs(destination_image_dir)
print(f"创建图片目录:{destination_image_dir}")
# 复制图片文件
shutil.copy2(source_image_path, destination_image_path)
images_copied += 1
print(f"已复制图片到:{destination_image_path}")
# 增加对应科室的文件计数
department_file_counts[department] += 1
else:
print(f"科室 '{department}' 不在处理列表中,不复制文件。")
else:
print(f"关键词 '{keyword}' 不在关键词列表中。")
except Exception as e:
print(f"处理文件 {source_file_path} 时发生错误:{e}")
print(f"总共处理了 {total_files_processed} 个 JSON 文件。")
print(f"总共匹配并复制了 {files_matched} 个 JSON 文件。")
print(f"总共复制了 {images_copied} 张图片。")
# 打印每个科室的文件计数
print("每个科室匹配并复制的文件数量:")
for dept in departments:
count = department_file_counts[dept]
dept_dir_name = get_department_dir_name(dept)
print(f"{dept_dir_name}: {count} 个文件")