Upload extract_questions.py with huggingface_hub
Browse files- extract_questions.py +172 -0
extract_questions.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import shutil
|
4 |
+
|
5 |
+
# 读取关键词文件并构建关键词映射字典
|
6 |
+
keyword_file = '/mnt/petrelfs/chenpengcheng/benchmark_preprocess/GMAI-MMbench-CoT/output_multi_column.txt'
|
7 |
+
keyword_dict = {}
|
8 |
+
|
9 |
+
with open(keyword_file, 'r', encoding='utf-8') as f:
|
10 |
+
for line in f:
|
11 |
+
line = line.strip()
|
12 |
+
if not line:
|
13 |
+
continue # 跳过空行
|
14 |
+
parts = line.split(',')
|
15 |
+
if len(parts) != 4:
|
16 |
+
print(f"格式错误,跳过此行:{line}")
|
17 |
+
continue
|
18 |
+
keyword, department, task, modality = [p.strip() for p in parts]
|
19 |
+
keyword_dict[keyword] = {
|
20 |
+
'department': department,
|
21 |
+
'task': task,
|
22 |
+
'modality': modality
|
23 |
+
}
|
24 |
+
|
25 |
+
print(f"总共加载了 {len(keyword_dict)} 个关键词。")
|
26 |
+
|
27 |
+
# 定义需要处理的科室列表
|
28 |
+
departments = [
|
29 |
+
'Cardiovascular Surgery',
|
30 |
+
'Dermatology',
|
31 |
+
'Endocrinology',
|
32 |
+
'Gastroenterology and Hepatology',
|
33 |
+
'General Surgery',
|
34 |
+
'Hematology',
|
35 |
+
'Infectious Diseases',
|
36 |
+
'Laboratory Medicine and Pathology',
|
37 |
+
'Nephrology and Hypertension',
|
38 |
+
'Neurosurgery',
|
39 |
+
'Obstetrics and Gynecology',
|
40 |
+
'Oncology (Medical)',
|
41 |
+
'Ophthalmology',
|
42 |
+
'Orthopedic Surgery',
|
43 |
+
'Otolaryngology (ENT)/Head and Neck Surgery',
|
44 |
+
'Pulmonary Medicine',
|
45 |
+
'Sports Medicine',
|
46 |
+
'Urology'
|
47 |
+
]
|
48 |
+
|
49 |
+
# 创建科室到目录名称的映射,处理特殊情况
|
50 |
+
def get_department_dir_name(department):
|
51 |
+
if department == 'Otolaryngology (ENT)/Head and Neck Surgery':
|
52 |
+
return 'Otolaryngology (ENT)'
|
53 |
+
else:
|
54 |
+
return department
|
55 |
+
|
56 |
+
# 将科室列表转换为集合,方便查找
|
57 |
+
departments_set = set(departments)
|
58 |
+
|
59 |
+
# 定义源目录列表
|
60 |
+
source_dirs = [
|
61 |
+
'/mnt/petrelfs/chenpengcheng/benchmark_preprocess/GMAI/cls_2d',
|
62 |
+
'/mnt/petrelfs/chenpengcheng/benchmark_preprocess/GMAI/det_2d',
|
63 |
+
'/mnt/petrelfs/chenpengcheng/benchmark_preprocess/GMAI/semantic_seg_2d',
|
64 |
+
'/mnt/petrelfs/chenpengcheng/benchmark_preprocess/GMAI/semantic_seg_3d'
|
65 |
+
]
|
66 |
+
|
67 |
+
# 定义目标基础目录
|
68 |
+
destination_root = '/mnt/petrelfs/chenpengcheng/benchmark_preprocess/GMAI-MMbench-CoT'
|
69 |
+
|
70 |
+
# 用于统计和调试
|
71 |
+
total_files_processed = 0
|
72 |
+
files_matched = 0
|
73 |
+
images_copied = 0
|
74 |
+
|
75 |
+
# 用于统计每个科室的匹配文件数
|
76 |
+
department_file_counts = {dept: 0 for dept in departments}
|
77 |
+
|
78 |
+
# 要处理的图片键列表
|
79 |
+
image_keys = ['img_mask_path', 'img_contour_path', 'img_bbox_path', 'img_path']
|
80 |
+
|
81 |
+
# 遍历每个源目录
|
82 |
+
for source_dir in source_dirs:
|
83 |
+
print(f"正在遍历目录:{source_dir}")
|
84 |
+
for root, dirs, files in os.walk(source_dir):
|
85 |
+
for file in files:
|
86 |
+
if file.endswith('.json'):
|
87 |
+
total_files_processed += 1
|
88 |
+
source_file_path = os.path.join(root, file)
|
89 |
+
try:
|
90 |
+
with open(source_file_path, 'r', encoding='utf-8') as f:
|
91 |
+
data = json.load(f)
|
92 |
+
answer_letter = data.get('answer', '').strip()
|
93 |
+
options = data.get('options', [])
|
94 |
+
if not answer_letter or not options:
|
95 |
+
print(f"文件缺少 'answer' 或 'options' 字段,跳过:{source_file_path}")
|
96 |
+
continue
|
97 |
+
# 创建选项字典,映射字母到选项文本
|
98 |
+
option_dict = {}
|
99 |
+
for opt in options:
|
100 |
+
if len(opt) > 2 and opt[1] == '.':
|
101 |
+
opt_letter = opt[0]
|
102 |
+
opt_text = opt[3:].strip()
|
103 |
+
option_dict[opt_letter] = opt_text
|
104 |
+
else:
|
105 |
+
print(f"选项格式错误,文件:{source_file_path},选项:{opt}")
|
106 |
+
# 获取关键词
|
107 |
+
keyword = option_dict.get(answer_letter)
|
108 |
+
if not keyword:
|
109 |
+
print(f"答案字母 '{answer_letter}' 在选项中未找到,文件:{source_file_path}")
|
110 |
+
continue
|
111 |
+
print(f"处理文件:{source_file_path}")
|
112 |
+
print(f"关键词:'{keyword}'")
|
113 |
+
# 检查关键词是否在关键词字典中
|
114 |
+
if keyword in keyword_dict:
|
115 |
+
department_info = keyword_dict[keyword]
|
116 |
+
department = department_info['department']
|
117 |
+
print(f"关键词 '{keyword}' 的科室为:'{department}'")
|
118 |
+
if department in departments_set:
|
119 |
+
files_matched += 1
|
120 |
+
department_dir_name = get_department_dir_name(department)
|
121 |
+
destination_base = os.path.join(destination_root, department_dir_name)
|
122 |
+
# 构造目标文件路径
|
123 |
+
relative_path = os.path.relpath(source_file_path, '/mnt/petrelfs/chenpengcheng/benchmark_preprocess/GMAI')
|
124 |
+
destination_file_path = os.path.join(destination_base, relative_path)
|
125 |
+
# 创建目标目录(如果不存在)
|
126 |
+
destination_dir = os.path.dirname(destination_file_path)
|
127 |
+
if not os.path.exists(destination_dir):
|
128 |
+
os.makedirs(destination_dir)
|
129 |
+
print(f"创建目录:{destination_dir}")
|
130 |
+
# 复制JSON文件
|
131 |
+
shutil.copy2(source_file_path, destination_file_path)
|
132 |
+
print(f"已复制文件到:{destination_file_path}")
|
133 |
+
# 处理并复制图片
|
134 |
+
for image_key in image_keys:
|
135 |
+
if image_key in data:
|
136 |
+
image_path = data[image_key]
|
137 |
+
# 图片路径是相对于 source_dir + '/images' 的
|
138 |
+
source_image_path = os.path.join(source_dir, 'images', image_path)
|
139 |
+
if not os.path.exists(source_image_path):
|
140 |
+
print(f"源图片不存在,跳过:{source_image_path}")
|
141 |
+
continue
|
142 |
+
# 构造相对路径,从 GMAI 之后开始,包括 'images' 目录
|
143 |
+
relative_image_path = os.path.relpath(source_image_path, '/mnt/petrelfs/chenpengcheng/benchmark_preprocess/GMAI')
|
144 |
+
# 构造目标图片路径
|
145 |
+
destination_image_path = os.path.join(destination_base, relative_image_path)
|
146 |
+
destination_image_dir = os.path.dirname(destination_image_path)
|
147 |
+
if not os.path.exists(destination_image_dir):
|
148 |
+
os.makedirs(destination_image_dir)
|
149 |
+
print(f"创建图片目录:{destination_image_dir}")
|
150 |
+
# 复制图片文件
|
151 |
+
shutil.copy2(source_image_path, destination_image_path)
|
152 |
+
images_copied += 1
|
153 |
+
print(f"已复制图片到:{destination_image_path}")
|
154 |
+
# 增加对应科室的文件计数
|
155 |
+
department_file_counts[department] += 1
|
156 |
+
else:
|
157 |
+
print(f"科室 '{department}' 不在处理列表中,不复制文件。")
|
158 |
+
else:
|
159 |
+
print(f"关键词 '{keyword}' 不在关键词列表中。")
|
160 |
+
except Exception as e:
|
161 |
+
print(f"处理文件 {source_file_path} 时发生错误:{e}")
|
162 |
+
|
163 |
+
print(f"总共处理了 {total_files_processed} 个 JSON 文件。")
|
164 |
+
print(f"总共匹配并复制了 {files_matched} 个 JSON 文件。")
|
165 |
+
print(f"总共复制了 {images_copied} 张图片。")
|
166 |
+
|
167 |
+
# 打印每个科室的文件计数
|
168 |
+
print("每个科室匹配并复制的文件数量:")
|
169 |
+
for dept in departments:
|
170 |
+
count = department_file_counts[dept]
|
171 |
+
dept_dir_name = get_department_dir_name(dept)
|
172 |
+
print(f"{dept_dir_name}: {count} 个文件")
|