Mistral-Nemo-Instruct-MCAI-SFT-DPO-3Epochs

This model is a fine-tuned version of pbevan11/Mistral-Nemo-Instruct-MCAI-SFT-3Epochs on the pbevan11/multilingual-constitutional-preference-pairs and the pbevan11/ultrafeedback_binarized_multilingual datasets. It achieves the following results on the evaluation set:

  • Loss: 0.5579
  • Rewards/chosen: -0.4264
  • Rewards/rejected: -0.9042
  • Rewards/accuracies: 0.7466
  • Rewards/margins: 0.4777
  • Logps/rejected: -213.7833
  • Logps/chosen: -192.1762
  • Logits/rejected: 0.5653
  • Logits/chosen: 0.5394

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 6
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 48
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
12
Safetensors
Model size
12.2B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pbevan11/Mistral-Nemo-MCAI-SFT-DPO

Finetuned
(1)
this model
Quantizations
2 models

Datasets used to train pbevan11/Mistral-Nemo-MCAI-SFT-DPO

Collection including pbevan11/Mistral-Nemo-MCAI-SFT-DPO