TQC Agent playing PandaPickAndPlace-v3
This is a trained model of a TQC agent playing PandaPickAndPlace-v3 using the stable-baselines3 library.
Usage (with Stable-baselines3)
TODO: Add your code
# 1 - 2
env_id = "PandaPickAndPlace-v3"
env = gym.make(env_id)
# 4
from stable_baselines3 import HerReplayBuffer, SAC
model = TQC(policy = "MultiInputPolicy",
env = env,
batch_size=2048,
gamma=0.95,
learning_rate=1e-4,
train_freq=64,
gradient_steps=64,
tau=0.05,
replay_buffer_class=HerReplayBuffer,
replay_buffer_kwargs=dict(
n_sampled_goal=4,
goal_selection_strategy="future",
),
policy_kwargs=dict(
net_arch=[512, 512, 512],
n_critics=2,
),
tensorboard_log=f"runs/{wandb_run.id}",
)
# 5
model.learn(1_000_000, progress_bar=True, callback=WandbCallback(verbose=2))
wandb_run.finish()
Weights & Biases charts: https://wandb.ai/patonw/PandaPickAndPlace-v3/runs/w7lzlwnx/workspace?workspace=user-patonw
- Downloads last month
- 2
Evaluation results
- mean_reward on PandaPickAndPlace-v3self-reported-6.30 +/- 1.79