pascalhuerten/bge_reranker_skillfit
Overview
This model is a finetuning of BAAI/bge-reranker-base on a German dataset containing positive and negative skill labels and learning outcomes of courses as the query. The model is trained to perform well on calculating relevance scores for learning outcome and esco skill pairs in German language.
Using FlagEmbedding
pip install -U FlagEmbedding
Get relevance scores (higher scores indicate more relevance):
from FlagEmbedding import FlagReranker
reranker = FlagReranker('pascalhuerten/bge_reranker_skillfit', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
scores = reranker.compute_score([['Einführung in die Arbeitsweise von WordPress', 'WordPress'], ['Einführung in die Arbeitsweise von WordPress', 'Software für Content-Management-Systeme nutzen'], ['Einführung in die Arbeitsweise von WordPress', 'Website-Sichtbarkeit erhöhen']])
print(scores)
Interpretation of Scores
The scores computed by the model tend to range from -12 to 12, with higher scores indicating more relevance. Scores greater than 0 tend to be good fits.
- Downloads last month
- 126
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.