Whisper Base Kn - Bharat Ramanathan

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1974
  • Wer: 30.8790

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 96
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.572 0.1 500 0.3198 50.3005
0.3153 0.2 1000 0.2464 37.2652
0.2533 0.3 1500 0.2298 36.5515
0.2212 1.04 2000 0.2157 34.5229
0.2013 1.14 2500 0.2090 32.6071
0.1881 1.24 3000 0.2043 32.7198
0.1784 1.34 3500 0.2014 30.8039
0.1715 2.08 4000 0.2014 31.5928
0.166 2.18 4500 0.1991 31.2547
0.1616 2.28 5000 0.1974 30.8790

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2
Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using parambharat/whisper-base-kn 1

Evaluation results