Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSURf: Teaching Large Vision-Language Models to Selectively Utilize Retrieved Information
Large Vision-Language Models (LVLMs) have become pivotal at the intersection of computer vision and natural language processing. However, the full potential of LVLMs Retrieval-Augmented Generation (RAG) capabilities remains underutilized. Existing works either focus solely on the text modality or are limited to specific tasks. Moreover, most LVLMs struggle to selectively utilize retrieved information and are sensitive to irrelevant or misleading references. To address these challenges, we propose a self-refinement framework designed to teach LVLMs to Selectively Utilize Retrieved Information (SURf). Specifically, when given questions that are incorrectly answered by the LVLM backbone, we obtain references that help correct the answers (positive references) and those that do not (negative references). We then fine-tune the LVLM backbone using a combination of these positive and negative references. Our experiments across three tasks and seven datasets demonstrate that our framework significantly enhances LVLMs ability to effectively utilize retrieved multimodal references and improves their robustness against irrelevant or misleading information. The source code is available at https://github.com/GasolSun36/SURf.
Disagreement as a way to study misinformation and its effects
Misinformation - false or misleading information - is considered a significant societal concern due to its associated "misinformation effects," such as political polarization, erosion of trust in institutions, problematic behavior, and public health challenges. However, the prevailing concept is misaligned with what is studied. While misinformation focuses on instances of information about factual matters, the broad spectrum of effects often manifests at a societal level and is shaped by a wide range of interdependent factors such as identity, values, opinions, epistemologies, and disagreements. Unsurprisingly, misinformation effects can occur without the prevalence of misinformation, and misinformation does not necessarily increase the effects studied. Here, we propose using disagreement - conflicting attitudes and beliefs between individuals and communities - as a way to study misinformation effects because it addresses the identified conceptual limitations of misinformation. Furthermore, unlike misinformation, disagreement does not require researchers to determine whether a given information is false or misleading. Thus, it can be studied and, more importantly, measured without the need to make a normative judgment about a given information, even when the specific topic is entirely removed, as we show in a longitudinal disagreement measurement. We demonstrate that disagreement, as a holistic concept, provides better explanations for the occurrence of misinformation effects, enhances precision in developing appropriate interventions, and offers a promising approach for evaluating them through quantification. Finally, we show how disagreement addresses current misinformation research questions and conclude with recommendations for research practice.
Generating abstractive summaries of Lithuanian news articles using a transformer model
In this work, we train the first monolingual Lithuanian transformer model on a relatively large corpus of Lithuanian news articles and compare various output decoding algorithms for abstractive news summarization. We achieve an average ROUGE-2 score 0.163, generated summaries are coherent and look impressive at first glance. However, some of them contain misleading information that is not so easy to spot. We describe all the technical details and share our trained model and accompanying code in an online open-source repository, as well as some characteristic samples of the generated summaries.
Avalon's Game of Thoughts: Battle Against Deception through Recursive Contemplation
Recent breakthroughs in large language models (LLMs) have brought remarkable success in the field of LLM-as-Agent. Nevertheless, a prevalent assumption is that the information processed by LLMs is consistently honest, neglecting the pervasive deceptive or misleading information in human society and AI-generated content. This oversight makes LLMs susceptible to malicious manipulations, potentially resulting in detrimental outcomes. This study utilizes the intricate Avalon game as a testbed to explore LLMs' potential in deceptive environments. Avalon, full of misinformation and requiring sophisticated logic, manifests as a "Game-of-Thoughts". Inspired by the efficacy of humans' recursive thinking and perspective-taking in the Avalon game, we introduce a novel framework, Recursive Contemplation (ReCon), to enhance LLMs' ability to identify and counteract deceptive information. ReCon combines formulation and refinement contemplation processes; formulation contemplation produces initial thoughts and speech, while refinement contemplation further polishes them. Additionally, we incorporate first-order and second-order perspective transitions into these processes respectively. Specifically, the first-order allows an LLM agent to infer others' mental states, and the second-order involves understanding how others perceive the agent's mental state. After integrating ReCon with different LLMs, extensive experiment results from the Avalon game indicate its efficacy in aiding LLMs to discern and maneuver around deceptive information without extra fine-tuning and data. Finally, we offer a possible explanation for the efficacy of ReCon and explore the current limitations of LLMs in terms of safety, reasoning, speaking style, and format, potentially furnishing insights for subsequent research.
Personas as a Way to Model Truthfulness in Language Models
Large Language Models are trained on vast amounts of text from the internet, which contains both factual and misleading information about the world. Can language models discern truth from falsehood in this contradicting data? Expanding on the view that LLMs can model different agents producing the corpora, we hypothesize that they can cluster truthful text by modeling a truthful persona: a group of agents that are likely to produce truthful text and share similar features. For example, trustworthy sources like Wikipedia and Science usually use formal writing styles and make consistent claims. By modeling this persona, LLMs can generalize truthfulness beyond the specific contexts in which each agent generated the training text. For example, the model can infer that the agent "Wikipedia" will behave truthfully on topics that were only generated by "Science" because they share a persona. We first show evidence for the persona hypothesis via two observations: (1) we can probe whether a model's answer will be truthful before it is generated; (2) finetuning a model on a set of facts improves its truthfulness on unseen topics. Next, using arithmetics as a synthetic environment, we show that language models can separate true and false statements, and generalize truthfulness across agents; but only if agents in the training data share a truthful generative process that enables the creation of a truthful persona. Overall, our findings suggest that models can exploit hierarchical structures in the data to learn abstract concepts like truthfulness.
SVQNet: Sparse Voxel-Adjacent Query Network for 4D Spatio-Temporal LiDAR Semantic Segmentation
LiDAR-based semantic perception tasks are critical yet challenging for autonomous driving. Due to the motion of objects and static/dynamic occlusion, temporal information plays an essential role in reinforcing perception by enhancing and completing single-frame knowledge. Previous approaches either directly stack historical frames to the current frame or build a 4D spatio-temporal neighborhood using KNN, which duplicates computation and hinders realtime performance. Based on our observation that stacking all the historical points would damage performance due to a large amount of redundant and misleading information, we propose the Sparse Voxel-Adjacent Query Network (SVQNet) for 4D LiDAR semantic segmentation. To take full advantage of the historical frames high-efficiently, we shunt the historical points into two groups with reference to the current points. One is the Voxel-Adjacent Neighborhood carrying local enhancing knowledge. The other is the Historical Context completing the global knowledge. Then we propose new modules to select and extract the instructive features from the two groups. Our SVQNet achieves state-of-the-art performance in LiDAR semantic segmentation of the SemanticKITTI benchmark and the nuScenes dataset.
Countering Malicious Content Moderation Evasion in Online Social Networks: Simulation and Detection of Word Camouflage
Content moderation is the process of screening and monitoring user-generated content online. It plays a crucial role in stopping content resulting from unacceptable behaviors such as hate speech, harassment, violence against specific groups, terrorism, racism, xenophobia, homophobia, or misogyny, to mention some few, in Online Social Platforms. These platforms make use of a plethora of tools to detect and manage malicious information; however, malicious actors also improve their skills, developing strategies to surpass these barriers and continuing to spread misleading information. Twisting and camouflaging keywords are among the most used techniques to evade platform content moderation systems. In response to this recent ongoing issue, this paper presents an innovative approach to address this linguistic trend in social networks through the simulation of different content evasion techniques and a multilingual Transformer model for content evasion detection. In this way, we share with the rest of the scientific community a multilingual public tool, named "pyleetspeak" to generate/simulate in a customizable way the phenomenon of content evasion through automatic word camouflage and a multilingual Named-Entity Recognition (NER) Transformer-based model tuned for its recognition and detection. The multilingual NER model is evaluated in different textual scenarios, detecting different types and mixtures of camouflage techniques, achieving an overall weighted F1 score of 0.8795. This article contributes significantly to countering malicious information by developing multilingual tools to simulate and detect new methods of evasion of content on social networks, making the fight against information disorders more effective.
Ethical and social risks of harm from Language Models
This paper aims to help structure the risk landscape associated with large-scale Language Models (LMs). In order to foster advances in responsible innovation, an in-depth understanding of the potential risks posed by these models is needed. A wide range of established and anticipated risks are analysed in detail, drawing on multidisciplinary expertise and literature from computer science, linguistics, and social sciences. We outline six specific risk areas: I. Discrimination, Exclusion and Toxicity, II. Information Hazards, III. Misinformation Harms, V. Malicious Uses, V. Human-Computer Interaction Harms, VI. Automation, Access, and Environmental Harms. The first area concerns the perpetuation of stereotypes, unfair discrimination, exclusionary norms, toxic language, and lower performance by social group for LMs. The second focuses on risks from private data leaks or LMs correctly inferring sensitive information. The third addresses risks arising from poor, false or misleading information including in sensitive domains, and knock-on risks such as the erosion of trust in shared information. The fourth considers risks from actors who try to use LMs to cause harm. The fifth focuses on risks specific to LLMs used to underpin conversational agents that interact with human users, including unsafe use, manipulation or deception. The sixth discusses the risk of environmental harm, job automation, and other challenges that may have a disparate effect on different social groups or communities. In total, we review 21 risks in-depth. We discuss the points of origin of different risks and point to potential mitigation approaches. Lastly, we discuss organisational responsibilities in implementing mitigations, and the role of collaboration and participation. We highlight directions for further research, particularly on expanding the toolkit for assessing and evaluating the outlined risks in LMs.
ContraQA: Question Answering under Contradicting Contexts
With a rise in false, inaccurate, and misleading information in propaganda, news, and social media, real-world Question Answering (QA) systems face the challenges of synthesizing and reasoning over contradicting information to derive correct answers. This urgency gives rise to the need to make QA systems robust to misinformation, a topic previously unexplored. We study the risk of misinformation to QA models by investigating the behavior of the QA model under contradicting contexts that are mixed with both real and fake information. We create the first large-scale dataset for this problem, namely Contra-QA, which contains over 10K human-written and model-generated contradicting pairs of contexts. Experiments show that QA models are vulnerable under contradicting contexts brought by misinformation. To defend against such a threat, we build a misinformation-aware QA system as a counter-measure that integrates question answering and misinformation detection in a joint fashion.
AraCOVID19-MFH: Arabic COVID-19 Multi-label Fake News and Hate Speech Detection Dataset
Along with the COVID-19 pandemic, an "infodemic" of false and misleading information has emerged and has complicated the COVID-19 response efforts. Social networking sites such as Facebook and Twitter have contributed largely to the spread of rumors, conspiracy theories, hate, xenophobia, racism, and prejudice. To combat the spread of fake news, researchers around the world have and are still making considerable efforts to build and share COVID-19 related research articles, models, and datasets. This paper releases "AraCOVID19-MFH" a manually annotated multi-label Arabic COVID-19 fake news and hate speech detection dataset. Our dataset contains 10,828 Arabic tweets annotated with 10 different labels. The labels have been designed to consider some aspects relevant to the fact-checking task, such as the tweet's check worthiness, positivity/negativity, and factuality. To confirm our annotated dataset's practical utility, we used it to train and evaluate several classification models and reported the obtained results. Though the dataset is mainly designed for fake news detection, it can also be used for hate speech detection, opinion/news classification, dialect identification, and many other tasks.
Diffusion Noise Feature: Accurate and Fast Generated Image Detection
Generative models have reached an advanced stage where they can produce remarkably realistic images. However, this remarkable generative capability also introduces the risk of disseminating false or misleading information. Notably, existing image detectors for generated images encounter challenges such as low accuracy and limited generalization. This paper seeks to address this issue by seeking a representation with strong generalization capabilities to enhance the detection of generated images. Our investigation has revealed that real and generated images display distinct latent Gaussian representations when subjected to an inverse diffusion process within a pre-trained diffusion model. Exploiting this disparity, we can amplify subtle artifacts in generated images. Building upon this insight, we introduce a novel image representation known as Diffusion Noise Feature (DNF). DNF is extracted from the estimated noise generated during the inverse diffusion process. A simple classifier, e.g., ResNet50, trained on DNF achieves high accuracy, robustness, and generalization capabilities for detecting generated images (even the corresponding generator is built with datasets/structures that are not seen during the classifier's training). We conducted experiments using four training datasets and five testsets, achieving state-of-the-art detection performance.
Semantic Volume: Quantifying and Detecting both External and Internal Uncertainty in LLMs
Large language models (LLMs) have demonstrated remarkable performance across diverse tasks by encoding vast amounts of factual knowledge. However, they are still prone to hallucinations, generating incorrect or misleading information, often accompanied by high uncertainty. Existing methods for hallucination detection primarily focus on quantifying internal uncertainty, which arises from missing or conflicting knowledge within the model. However, hallucinations can also stem from external uncertainty, where ambiguous user queries lead to multiple possible interpretations. In this work, we introduce Semantic Volume, a novel mathematical measure for quantifying both external and internal uncertainty in LLMs. Our approach perturbs queries and responses, embeds them in a semantic space, and computes the determinant of the Gram matrix of the embedding vectors, capturing their dispersion as a measure of uncertainty. Our framework provides a generalizable and unsupervised uncertainty detection method without requiring white-box access to LLMs. We conduct extensive experiments on both external and internal uncertainty detection, demonstrating that our Semantic Volume method consistently outperforms existing baselines in both tasks. Additionally, we provide theoretical insights linking our measure to differential entropy, unifying and extending previous sampling-based uncertainty measures such as the semantic entropy. Semantic Volume is shown to be a robust and interpretable approach to improving the reliability of LLMs by systematically detecting uncertainty in both user queries and model responses.
TM-TREK at SemEval-2024 Task 8: Towards LLM-Based Automatic Boundary Detection for Human-Machine Mixed Text
With the increasing prevalence of text generated by large language models (LLMs), there is a growing concern about distinguishing between LLM-generated and human-written texts in order to prevent the misuse of LLMs, such as the dissemination of misleading information and academic dishonesty. Previous research has primarily focused on classifying text as either entirely human-written or LLM-generated, neglecting the detection of mixed texts that contain both types of content. This paper explores LLMs' ability to identify boundaries in human-written and machine-generated mixed texts. We approach this task by transforming it into a token classification problem and regard the label turning point as the boundary. Notably, our ensemble model of LLMs achieved first place in the 'Human-Machine Mixed Text Detection' sub-task of the SemEval'24 Competition Task 8. Additionally, we investigate factors that influence the capability of LLMs in detecting boundaries within mixed texts, including the incorporation of extra layers on top of LLMs, combination of segmentation loss, and the impact of pretraining. Our findings aim to provide valuable insights for future research in this area.
Detecting Machine-Generated Texts by Multi-Population Aware Optimization for Maximum Mean Discrepancy
Large language models (LLMs) such as ChatGPT have exhibited remarkable performance in generating human-like texts. However, machine-generated texts (MGTs) may carry critical risks, such as plagiarism issues, misleading information, or hallucination issues. Therefore, it is very urgent and important to detect MGTs in many situations. Unfortunately, it is challenging to distinguish MGTs and human-written texts because the distributional discrepancy between them is often very subtle due to the remarkable performance of LLMs. In this paper, we seek to exploit maximum mean discrepancy (MMD) to address this issue in the sense that MMD can well identify distributional discrepancies. However, directly training a detector with MMD using diverse MGTs will incur a significantly increased variance of MMD since MGTs may contain multiple text populations due to various LLMs. This will severely impair MMD's ability to measure the difference between two samples. To tackle this, we propose a novel multi-population aware optimization method for MMD called MMD-MP, which can avoid variance increases and thus improve the stability to measure the distributional discrepancy. Relying on MMD-MP, we develop two methods for paragraph-based and sentence-based detection, respectively. Extensive experiments on various LLMs, \eg, GPT2 and ChatGPT, show superior detection performance of our MMD-MP. The source code is available at https://github.com/ZSHsh98/MMD-MP.
Coffee: Boost Your Code LLMs by Fixing Bugs with Feedback
Code editing is an essential step towards reliable program synthesis to automatically correct critical errors generated from code LLMs. Recent studies have demonstrated that closed-source LLMs (i.e., ChatGPT and GPT-4) are capable of generating corrective feedback to edit erroneous inputs. However, it remains challenging for open-source code LLMs to generate feedback for code editing, since these models tend to adhere to the superficial formats of feedback and provide feedback with misleading information. Hence, the focus of our work is to leverage open-source code LLMs to generate helpful feedback with correct guidance for code editing. To this end, we present Coffee, a collected dataset specifically designed for code fixing with feedback. Using this dataset, we construct CoffeePots, a framework for COde Fixing with FEEdback via Preference-Optimized Tuning and Selection. The proposed framework aims to automatically generate helpful feedback for code editing while minimizing the potential risk of superficial feedback. The combination of Coffee and CoffeePots marks a significant advancement, achieving state-of-the-art performance on HumanEvalFix benchmark. Codes and model checkpoints are publicly available at https://github.com/Lune-Blue/COFFEE.
HiQA: A Hierarchical Contextual Augmentation RAG for Multi-Documents QA
Retrieval-augmented generation (RAG) has rapidly advanced the language model field, particularly in question-answering (QA) systems. By integrating external documents during the response generation phase, RAG significantly enhances the accuracy and reliability of language models. This method elevates the quality of responses and reduces the frequency of hallucinations, where the model generates incorrect or misleading information. However, these methods exhibit limited retrieval accuracy when faced with numerous indistinguishable documents, presenting notable challenges in their practical application. In response to these emerging challenges, we present HiQA, an advanced multi-document question-answering (MDQA) framework that integrates cascading metadata into content and a multi-route retrieval mechanism. We also release a benchmark called MasQA to evaluate and research in MDQA. Finally, HiQA demonstrates the state-of-the-art performance in multi-document environments.
Safety Assessment of Chinese Large Language Models
With the rapid popularity of large language models such as ChatGPT and GPT-4, a growing amount of attention is paid to their safety concerns. These models may generate insulting and discriminatory content, reflect incorrect social values, and may be used for malicious purposes such as fraud and dissemination of misleading information. Evaluating and enhancing their safety is particularly essential for the wide application of large language models (LLMs). To further promote the safe deployment of LLMs, we develop a Chinese LLM safety assessment benchmark. Our benchmark explores the comprehensive safety performance of LLMs from two perspectives: 8 kinds of typical safety scenarios and 6 types of more challenging instruction attacks. Our benchmark is based on a straightforward process in which it provides the test prompts and evaluates the safety of the generated responses from the evaluated model. In evaluation, we utilize the LLM's strong evaluation ability and develop it as a safety evaluator by prompting. On top of this benchmark, we conduct safety assessments and analyze 15 LLMs including the OpenAI GPT series and other well-known Chinese LLMs, where we observe some interesting findings. For example, we find that instruction attacks are more likely to expose safety issues of all LLMs. Moreover, to promote the development and deployment of safe, responsible, and ethical AI, we publicly release SafetyPrompts including 100k augmented prompts and responses by LLMs.
RbFT: Robust Fine-tuning for Retrieval-Augmented Generation against Retrieval Defects
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by integrating external knowledge retrieved from a knowledge base. However, its effectiveness is fundamentally constrained by the reliability of both the retriever and the knowledge base. In real-world scenarios, imperfections in these components often lead to the retrieval of noisy, irrelevant, or misleading counterfactual information, ultimately undermining the trustworthiness of RAG systems. To address this challenge, we propose Robust Fine-Tuning (RbFT), a method designed to enhance the resilience of LLMs against retrieval defects through two targeted fine-tuning tasks. Experimental results demonstrate that RbFT significantly improves the robustness of RAG systems across diverse retrieval conditions, surpassing existing methods while maintaining high inference efficiency and compatibility with other robustness techniques.
X-Pool: Cross-Modal Language-Video Attention for Text-Video Retrieval
In text-video retrieval, the objective is to learn a cross-modal similarity function between a text and a video that ranks relevant text-video pairs higher than irrelevant pairs. However, videos inherently express a much wider gamut of information than texts. Instead, texts often capture sub-regions of entire videos and are most semantically similar to certain frames within videos. Therefore, for a given text, a retrieval model should focus on the text's most semantically similar video sub-regions to make a more relevant comparison. Yet, most existing works aggregate entire videos without directly considering text. Common text-agnostic aggregations schemes include mean-pooling or self-attention over the frames, but these are likely to encode misleading visual information not described in the given text. To address this, we propose a cross-modal attention model called X-Pool that reasons between a text and the frames of a video. Our core mechanism is a scaled dot product attention for a text to attend to its most semantically similar frames. We then generate an aggregated video representation conditioned on the text's attention weights over the frames. We evaluate our method on three benchmark datasets of MSR-VTT, MSVD and LSMDC, achieving new state-of-the-art results by up to 12% in relative improvement in Recall@1. Our findings thereby highlight the importance of joint text-video reasoning to extract important visual cues according to text. Full code and demo can be found at: https://layer6ai-labs.github.io/xpool/
Worse than Zero-shot? A Fact-Checking Dataset for Evaluating the Robustness of RAG Against Misleading Retrievals
Retrieval-augmented generation (RAG) has shown impressive capabilities in mitigating hallucinations in large language models (LLMs). However, LLMs struggle to handle misleading retrievals and often fail to maintain their own reasoning when exposed to conflicting or selectively-framed evidence, making them vulnerable to real-world misinformation. In such real-world retrieval scenarios, misleading and conflicting information is rampant, particularly in the political domain, where evidence is often selectively framed, incomplete, or polarized. However, existing RAG benchmarks largely assume a clean retrieval setting, where models succeed by accurately retrieving and generating answers from gold-standard documents. This assumption fails to align with real-world conditions, leading to an overestimation of RAG system performance. To bridge this gap, we introduce RAGuard, a fact-checking dataset designed to evaluate the robustness of RAG systems against misleading retrievals. Unlike prior benchmarks that rely on synthetic noise, our dataset constructs its retrieval corpus from Reddit discussions, capturing naturally occurring misinformation. It categorizes retrieved evidence into three types: supporting, misleading, and irrelevant, providing a realistic and challenging testbed for assessing how well RAG systems navigate different retrieval information. Our benchmark experiments reveal that when exposed to misleading retrievals, all tested LLM-powered RAG systems perform worse than their zero-shot baselines (i.e., no retrieval at all), highlighting their susceptibility to noisy environments. To the best of our knowledge, RAGuard is the first benchmark to systematically assess RAG robustness against misleading evidence. We expect this benchmark will drive future research toward improving RAG systems beyond idealized datasets, making them more reliable for real-world applications.
RVISA: Reasoning and Verification for Implicit Sentiment Analysis
With an increasing social demand for fine-grained sentiment analysis (SA), implicit sentiment analysis (ISA) poses a significant challenge with the absence of salient cue words in expressions. It necessitates reliable reasoning to understand how the sentiment is aroused and thus determine implicit sentiments. In the era of Large Language Models (LLMs), Encoder-Decoder (ED) LLMs have gained popularity to serve as backbone models for SA applications, considering impressive text comprehension and reasoning ability among diverse tasks. On the other hand, Decoder-only (DO) LLMs exhibit superior natural language generation and in-context learning capabilities. However, their responses may contain misleading or inaccurate information. To identify implicit sentiment with reliable reasoning, this study proposes RVISA, a two-stage reasoning framework that harnesses the generation ability of DO LLMs and the reasoning ability of ED LLMs to train an enhanced reasoner. Specifically, we adopt three-hop reasoning prompting to explicitly furnish sentiment elements as cues. The generated rationales are utilized to fine-tune an ED LLM into a skilled reasoner. Additionally, we develop a straightforward yet effective verification mechanism to ensure the reliability of the reasoning learning. We evaluated the proposed method on two benchmark datasets and achieved state-of-the-art results in ISA performance.
Why So Gullible? Enhancing the Robustness of Retrieval-Augmented Models against Counterfactual Noise
Most existing retrieval-augmented language models (LMs) assume a naive dichotomy within a retrieved document set: query-relevance and irrelevance. Our work investigates a more challenging scenario in which even the "relevant" documents may contain misleading or incorrect information, causing conflict among the retrieved documents and thereby negatively influencing model decisions as noise. We observe that existing LMs are highly brittle to the presence of conflicting information in both the fine-tuning and in-context few-shot learning scenarios. We propose approaches for handling knowledge conflicts among retrieved documents by explicitly fine-tuning a discriminator or prompting GPT-3.5 to elicit its discriminative capability. Our empirical results on open-domain QA show that these approaches significantly enhance model robustness. We also provide our findings on incorporating the fine-tuned discriminator's decision into the in-context learning process, proposing a way to exploit the benefits of two disparate learning schemes. Alongside our findings, we provide MacNoise, a machine-generated, conflict-induced dataset to further encourage research in this direction.
HaloScope: Harnessing Unlabeled LLM Generations for Hallucination Detection
The surge in applications of large language models (LLMs) has prompted concerns about the generation of misleading or fabricated information, known as hallucinations. Therefore, detecting hallucinations has become critical to maintaining trust in LLM-generated content. A primary challenge in learning a truthfulness classifier is the lack of a large amount of labeled truthful and hallucinated data. To address the challenge, we introduce HaloScope, a novel learning framework that leverages the unlabeled LLM generations in the wild for hallucination detection. Such unlabeled data arises freely upon deploying LLMs in the open world, and consists of both truthful and hallucinated information. To harness the unlabeled data, we present an automated membership estimation score for distinguishing between truthful and untruthful generations within unlabeled mixture data, thereby enabling the training of a binary truthfulness classifier on top. Importantly, our framework does not require extra data collection and human annotations, offering strong flexibility and practicality for real-world applications. Extensive experiments show that HaloScope can achieve superior hallucination detection performance, outperforming the competitive rivals by a significant margin. Code is available at https://github.com/deeplearningwisc/haloscope.
Towards Knowledge Checking in Retrieval-augmented Generation: A Representation Perspective
Retrieval-Augmented Generation (RAG) systems have shown promise in enhancing the performance of Large Language Models (LLMs). However, these systems face challenges in effectively integrating external knowledge with the LLM's internal knowledge, often leading to issues with misleading or unhelpful information. This work aims to provide a systematic study on knowledge checking in RAG systems. We conduct a comprehensive analysis of LLM representation behaviors and demonstrate the significance of using representations in knowledge checking. Motivated by the findings, we further develop representation-based classifiers for knowledge filtering. We show substantial improvements in RAG performance, even when dealing with noisy knowledge databases. Our study provides new insights into leveraging LLM representations for enhancing the reliability and effectiveness of RAG systems.
Recent Advances towards Safe, Responsible, and Moral Dialogue Systems: A Survey
With the development of artificial intelligence, dialogue systems have been endowed with amazing chit-chat capabilities, and there is widespread interest and discussion about whether the generated contents are socially beneficial. In this paper, we present a new perspective of research scope towards building a safe, responsible, and modal dialogue system, including 1) abusive and toxic contents, 2) unfairness and discrimination, 3) ethics and morality issues, and 4) risk of misleading and privacy information. Besides, we review the mainstream methods for evaluating the safety of large models from the perspectives of exposure and detection of safety issues. The recent advances in methodologies for the safety improvement of both end-to-end dialogue systems and pipeline-based models are further introduced. Finally, we discussed six existing challenges towards responsible AI: explainable safety monitoring, continuous learning of safety issues, robustness against malicious attacks, multimodal information processing, unified research framework, and multidisciplinary theory integration. We hope this survey will inspire further research toward safer dialogue systems.
Not all Fake News is Written: A Dataset and Analysis of Misleading Video Headlines
Polarization and the marketplace for impressions have conspired to make navigating information online difficult for users, and while there has been a significant effort to detect false or misleading text, multimodal datasets have received considerably less attention. To complement existing resources, we present multimodal Video Misleading Headline (VMH), a dataset that consists of videos and whether annotators believe the headline is representative of the video's contents. After collecting and annotating this dataset, we analyze multimodal baselines for detecting misleading headlines. Our annotation process also focuses on why annotators view a video as misleading, allowing us to better understand the interplay of annotators' background and the content of the videos.
Evaluating D-MERIT of Partial-annotation on Information Retrieval
Retrieval models are often evaluated on partially-annotated datasets. Each query is mapped to a few relevant texts and the remaining corpus is assumed to be irrelevant. As a result, models that successfully retrieve false negatives are punished in evaluation. Unfortunately, completely annotating all texts for every query is not resource efficient. In this work, we show that using partially-annotated datasets in evaluation can paint a distorted picture. We curate D-MERIT, a passage retrieval evaluation set from Wikipedia, aspiring to contain all relevant passages for each query. Queries describe a group (e.g., ``journals about linguistics'') and relevant passages are evidence that entities belong to the group (e.g., a passage indicating that Language is a journal about linguistics). We show that evaluating on a dataset containing annotations for only a subset of the relevant passages might result in misleading ranking of the retrieval systems and that as more relevant texts are included in the evaluation set, the rankings converge. We propose our dataset as a resource for evaluation and our study as a recommendation for balance between resource-efficiency and reliable evaluation when annotating evaluation sets for text retrieval.
Is this the real life? Is this just fantasy? The Misleading Success of Simulating Social Interactions With LLMs
Recent advances in large language models (LLM) have enabled richer social simulations, allowing for the study of various social phenomena with LLM-based agents. However, most work has used an omniscient perspective on these simulations (e.g., single LLM to generate all interlocutors), which is fundamentally at odds with the non-omniscient, information asymmetric interactions that humans have. To examine these differences, we develop an evaluation framework to simulate social interactions with LLMs in various settings (omniscient, non-omniscient). Our experiments show that interlocutors simulated omnisciently are much more successful at accomplishing social goals compared to non-omniscient agents, despite the latter being the more realistic setting. Furthermore, we demonstrate that learning from omniscient simulations improves the apparent naturalness of interactions but scarcely enhances goal achievement in cooperative scenarios. Our findings indicate that addressing information asymmetry remains a fundamental challenge for LLM-based agents.
Do Large Language Models have Problem-Solving Capability under Incomplete Information Scenarios?
The evaluation of the problem-solving capability under incomplete information scenarios of Large Language Models (LLMs) is increasingly important, encompassing capabilities such as questioning, knowledge search, error detection, and path planning. Current research mainly focus on LLMs' problem-solving capability such as ``Twenty Questions''. However, these kinds of games do not require recognizing misleading cues which are necessary in the incomplete information scenario. Moreover, the existing game such as ``Who is undercover'' are highly subjective, making it challenging for evaluation. Therefore, in this paper, we introduce a novel game named BrainKing based on the ``Who is undercover'' and ``Twenty Questions'' for evaluating LLM capabilities under incomplete information scenarios. It requires LLMs to identify target entities with limited yes-or-no questions and potential misleading answers. By setting up easy, medium, and hard difficulty modes, we comprehensively assess the performance of LLMs across various aspects. Our results reveal the capabilities and limitations of LLMs in BrainKing, providing significant insights of LLM problem-solving levels.
Thrust: Adaptively Propels Large Language Models with External Knowledge
Although large-scale pre-trained language models (PTLMs) are shown to encode rich knowledge in their model parameters, the inherent knowledge in PTLMs can be opaque or static, making external knowledge necessary. However, the existing information retrieval techniques could be costly and may even introduce noisy and sometimes misleading knowledge. To address these challenges, we propose the instance-level adaptive propulsion of external knowledge (IAPEK), where we only conduct the retrieval when necessary. To achieve this goal, we propose measuring whether a PTLM contains enough knowledge to solve an instance with a novel metric, Thrust, which leverages the representation distribution of a small number of seen instances. Extensive experiments demonstrate that thrust is a good measurement of PTLM models' instance-level knowledgeability. Moreover, we can achieve significantly higher cost-efficiency with the Thrust score as the retrieval indicator than the naive usage of external knowledge on 88% of the evaluated tasks with 26% average performance improvement. Such findings shed light on the real-world practice of knowledge-enhanced LMs with a limited knowledge-seeking budget due to computation latency or costs.
CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs' Mathematical Reasoning Capabilities
Recent large language models (LLMs) have shown indications of mathematical reasoning ability. However it has not been clear how they would fare on more challenging competition-level problems. And while self-generated verbalizations of intermediate reasoning steps (i.e., chain-of-thought prompting) have been shown to be helpful, whether LLMs can make use of helpful side information such as problem-specific hints has not been investigated before. In this paper, we propose a challenging benchmark dataset for enabling such analyses. The Concept and Hint-Annotated Math Problems (CHAMP) consists of high school math competition problems, annotated with concepts, or general math facts, and hints, or problem-specific tricks. These annotations allow us to explore the effects of additional information, such as relevant hints, misleading concepts, or related problems. This benchmark is difficult, with the best model only scoring 58.1% in standard settings. With concepts and hints, performance sometimes improves, indicating that some models can make use of such side information. We further annotate model-generated solutions for their correctness. Using this corpus, we find that models often arrive at the correct final answer through wrong reasoning steps. In addition, we test whether models are able to verify these solutions, and find that most models struggle. The dataset and code are available on the project website.
How Easily do Irrelevant Inputs Skew the Responses of Large Language Models?
By leveraging the retrieval of information from external knowledge databases, Large Language Models (LLMs) exhibit enhanced capabilities for accomplishing many knowledge-intensive tasks. However, due to the inherent flaws of current retrieval systems, there might exist irrelevant information within those retrieving top-ranked passages. In this work, we present a comprehensive investigation into the robustness of LLMs to different types of irrelevant information under various conditions. We initially introduce a framework to construct high-quality irrelevant information that ranges from semantically unrelated, partially related, and related to questions. Furthermore, our analysis demonstrates that the constructed irrelevant information not only scores highly on similarity metrics, being highly retrieved by existing systems, but also bears semantic connections to the context. Our investigation reveals that current LLMs still face challenges in discriminating highly semantically related information and can be easily distracted by these irrelevant yet misleading contents. Besides, we also find that current solutions for handling irrelevant information have limitations in improving the robustness of LLMs to such distractions. Resources are available at https://github.com/Di-viner/LLM-Robustness-to-Irrelevant-Information.
Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes
Controllable music generation with deep generative models has become increasingly reliant on disentanglement learning techniques. However, current disentanglement metrics, such as mutual information gap (MIG), are often inadequate and misleading when used for evaluating latent representations in the presence of interdependent semantic attributes often encountered in real-world music datasets. In this work, we propose a dependency-aware information metric as a drop-in replacement for MIG that accounts for the inherent relationship between semantic attributes.
PhysGame: Uncovering Physical Commonsense Violations in Gameplay Videos
Recent advancements in video-based large language models (Video LLMs) have witnessed the emergence of diverse capabilities to reason and interpret dynamic visual content. Among them, gameplay videos stand out as a distinctive data source, often containing glitches that defy physics commonsense. This characteristic renders them an effective benchmark for assessing the under-explored capability of physical commonsense understanding in video LLMs. In this paper, we propose PhysGame as a pioneering benchmark to evaluate physical commonsense violations in gameplay videos. PhysGame comprises 880 videos associated with glitches spanning four fundamental domains (i.e., mechanics, kinematics, optics, and material properties) and across 12 distinct physical commonsense. Through extensively evaluating various state-ofthe-art video LLMs, our findings reveal that the performance of current open-source video LLMs significantly lags behind that of proprietary counterparts. To bridge this gap, we curate an instruction tuning dataset PhysInstruct with 140,057 question-answering pairs to facilitate physical commonsense learning. In addition, we also propose a preference optimization dataset PhysDPO with 34,358 training pairs, where the dis-preferred responses are generated conditioned on misleading titles (i.e., meta information hacking), fewer frames (i.e., temporal hacking) and lower spatial resolutions (i.e., spatial hacking). Based on the suite of datasets, we propose PhysVLM as a physical knowledge-enhanced video LLM. Extensive experiments on both physical-oriented benchmark PhysGame and general video understanding benchmarks demonstrate the state-ofthe-art performance of PhysVLM.
Combating Online Misinformation Videos: Characterization, Detection, and Future Directions
With information consumption via online video streaming becoming increasingly popular, misinformation video poses a new threat to the health of the online information ecosystem. Though previous studies have made much progress in detecting misinformation in text and image formats, video-based misinformation brings new and unique challenges to automatic detection systems: 1) high information heterogeneity brought by various modalities, 2) blurred distinction between misleading video manipulation and ubiquitous artistic video editing, and 3) new patterns of misinformation propagation due to the dominant role of recommendation systems on online video platforms. To facilitate research on this challenging task, we conduct this survey to present advances in misinformation video detection research. We first analyze and characterize the misinformation video from three levels including signals, semantics, and intents. Based on the characterization, we systematically review existing works for detection from features of various modalities to techniques for clue integration. We also introduce existing resources including representative datasets and widely used tools. Besides summarizing existing studies, we discuss related areas and outline open issues and future directions to encourage and guide more research on misinformation video detection. Our corresponding public repository is available at https://github.com/ICTMCG/Awesome-Misinfo-Video-Detection.
Astute RAG: Overcoming Imperfect Retrieval Augmentation and Knowledge Conflicts for Large Language Models
Retrieval-Augmented Generation (RAG), while effective in integrating external knowledge to address the limitations of large language models (LLMs), can be undermined by imperfect retrieval, which may introduce irrelevant, misleading, or even malicious information. Despite its importance, previous studies have rarely explored the behavior of RAG through joint analysis on how errors from imperfect retrieval attribute and propagate, and how potential conflicts arise between the LLMs' internal knowledge and external sources. We find that imperfect retrieval augmentation might be inevitable and quite harmful, through controlled analysis under realistic conditions. We identify the knowledge conflicts between LLM-internal and external knowledge from retrieval as a bottleneck to overcome in the post-retrieval stage of RAG. To render LLMs resilient to imperfect retrieval, we propose Astute RAG, a novel RAG approach that adaptively elicits essential information from LLMs' internal knowledge, iteratively consolidates internal and external knowledge with source-awareness, and finalizes the answer according to information reliability. Our experiments using Gemini and Claude demonstrate that Astute RAG significantly outperforms previous robustness-enhanced RAG methods. Notably, Astute RAG is the only approach that matches or exceeds the performance of LLMs without RAG under worst-case scenarios. Further analysis reveals that Astute RAG effectively resolves knowledge conflicts, improving the reliability and trustworthiness of RAG systems.
Disentangled Contrastive Collaborative Filtering
Recent studies show that graph neural networks (GNNs) are prevalent to model high-order relationships for collaborative filtering (CF). Towards this research line, graph contrastive learning (GCL) has exhibited powerful performance in addressing the supervision label shortage issue by learning augmented user and item representations. While many of them show their effectiveness, two key questions still remain unexplored: i) Most existing GCL-based CF models are still limited by ignoring the fact that user-item interaction behaviors are often driven by diverse latent intent factors (e.g., shopping for family party, preferred color or brand of products); ii) Their introduced non-adaptive augmentation techniques are vulnerable to noisy information, which raises concerns about the model's robustness and the risk of incorporating misleading self-supervised signals. In light of these limitations, we propose a Disentangled Contrastive Collaborative Filtering framework (DCCF) to realize intent disentanglement with self-supervised augmentation in an adaptive fashion. With the learned disentangled representations with global context, our DCCF is able to not only distill finer-grained latent factors from the entangled self-supervision signals but also alleviate the augmentation-induced noise. Finally, the cross-view contrastive learning task is introduced to enable adaptive augmentation with our parameterized interaction mask generator. Experiments on various public datasets demonstrate the superiority of our method compared to existing solutions. Our model implementation is released at the link https://github.com/HKUDS/DCCF.
A Guide to Misinformation Detection Datasets
Misinformation is a complex societal issue, and mitigating solutions are difficult to create due to data deficiencies. To address this problem, we have curated the largest collection of (mis)information datasets in the literature, totaling 75. From these, we evaluated the quality of all of the 36 datasets that consist of statements or claims. We assess these datasets to identify those with solid foundations for empirical work and those with flaws that could result in misleading and non-generalizable results, such as insufficient label quality, spurious correlations, or political bias. We further provide state-of-the-art baselines on all these datasets, but show that regardless of label quality, categorical labels may no longer give an accurate evaluation of detection model performance. We discuss alternatives to mitigate this problem. Overall, this guide aims to provide a roadmap for obtaining higher quality data and conducting more effective evaluations, ultimately improving research in misinformation detection. All datasets and other artifacts are available at https://misinfo-datasets.complexdatalab.com/.
Can LLM-Generated Misinformation Be Detected?
The advent of Large Language Models (LLMs) has made a transformative impact. However, the potential that LLMs such as ChatGPT can be exploited to generate misinformation has posed a serious concern to online safety and public trust. A fundamental research question is: will LLM-generated misinformation cause more harm than human-written misinformation? We propose to tackle this question from the perspective of detection difficulty. We first build a taxonomy of LLM-generated misinformation. Then we categorize and validate the potential real-world methods for generating misinformation with LLMs. Then, through extensive empirical investigation, we discover that LLM-generated misinformation can be harder to detect for humans and detectors compared to human-written misinformation with the same semantics, which suggests it can have more deceptive styles and potentially cause more harm. We also discuss the implications of our discovery on combating misinformation in the age of LLMs and the countermeasures.
Using Persuasive Writing Strategies to Explain and Detect Health Misinformation
The spread of misinformation is a prominent problem in today's society, and many researchers in academia and industry are trying to combat it. Due to the vast amount of misinformation that is created every day, it is unrealistic to leave this task to human fact-checkers. Data scientists and researchers have been working on automated misinformation detection for years, and it is still a challenging problem today. The goal of our research is to add a new level to automated misinformation detection; classifying segments of text with persuasive writing techniques in order to produce interpretable reasoning for why an article can be marked as misinformation. To accomplish this, we present a novel annotation scheme containing many common persuasive writing tactics, along with a dataset with human annotations accordingly. For this task, we make use of a RoBERTa model for text classification, due to its high performance in NLP. We develop several language model-based baselines and present the results of our persuasive strategy label predictions as well as the improvements these intermediate labels make in detecting misinformation and producing interpretable results.
Synthetic Data -- what, why and how?
This explainer document aims to provide an overview of the current state of the rapidly expanding work on synthetic data technologies, with a particular focus on privacy. The article is intended for a non-technical audience, though some formal definitions have been given to provide clarity to specialists. This article is intended to enable the reader to quickly become familiar with the notion of synthetic data, as well as understand some of the subtle intricacies that come with it. We do believe that synthetic data is a very useful tool, and our hope is that this report highlights that, while drawing attention to nuances that can easily be overlooked in its deployment.
What Evidence Do Language Models Find Convincing?
Retrieval-augmented language models are being increasingly tasked with subjective, contentious, and conflicting queries such as "is aspartame linked to cancer". To resolve these ambiguous queries, one must search through a large range of websites and consider "which, if any, of this evidence do I find convincing?". In this work, we study how LLMs answer this question. In particular, we construct ConflictingQA, a dataset that pairs controversial queries with a series of real-world evidence documents that contain different facts (e.g., quantitative results), argument styles (e.g., appeals to authority), and answers (Yes or No). We use this dataset to perform sensitivity and counterfactual analyses to explore which text features most affect LLM predictions. Overall, we find that current models rely heavily on the relevance of a website to the query, while largely ignoring stylistic features that humans find important such as whether a text contains scientific references or is written with a neutral tone. Taken together, these results highlight the importance of RAG corpus quality (e.g., the need to filter misinformation), and possibly even a shift in how LLMs are trained to better align with human judgements.
Using Neural Network for Identifying Clickbaits in Online News Media
Online news media sometimes use misleading headlines to lure users to open the news article. These catchy headlines that attract users but disappointed them at the end, are called Clickbaits. Because of the importance of automatic clickbait detection in online medias, lots of machine learning methods were proposed and employed to find the clickbait headlines. In this research, a model using deep learning methods is proposed to find the clickbaits in Clickbait Challenge 2017's dataset. The proposed model gained the first rank in the Clickbait Challenge 2017 in terms of Mean Squared Error. Also, data analytics and visualization techniques are employed to explore and discover the provided dataset to get more insight from the data.
Combating Misinformation in the Age of LLMs: Opportunities and Challenges
Misinformation such as fake news and rumors is a serious threat on information ecosystems and public trust. The emergence of Large Language Models (LLMs) has great potential to reshape the landscape of combating misinformation. Generally, LLMs can be a double-edged sword in the fight. On the one hand, LLMs bring promising opportunities for combating misinformation due to their profound world knowledge and strong reasoning abilities. Thus, one emergent question is: how to utilize LLMs to combat misinformation? On the other hand, the critical challenge is that LLMs can be easily leveraged to generate deceptive misinformation at scale. Then, another important question is: how to combat LLM-generated misinformation? In this paper, we first systematically review the history of combating misinformation before the advent of LLMs. Then we illustrate the current efforts and present an outlook for these two fundamental questions respectively. The goal of this survey paper is to facilitate the progress of utilizing LLMs for fighting misinformation and call for interdisciplinary efforts from different stakeholders for combating LLM-generated misinformation.
Are Fact-Checking Tools Reliable? An Evaluation of Google Fact Check
Fact-checking is an important way to combat misinformation on social media, especially during significant social events such as the COVID-19 pandemic and the U.S. presidential elections. In this study, we thoroughly evaluated the performance of Google Fact Check, a search engine specifically for fact-checking results, by analyzing the results returned from Google Fact Check regarding 1,000 false claims about COVID-19. We found that Google Fact Check could not provide sufficient fact-checking information for most false claims, even though the results provided are relatively reliable and helpful. We also found that claims getting different fact-checking verdicts tend to contain different emotional tones, and different sources tend to check claims using dictionary words to different extents and at different lengths. Claims in different descriptions are likely to get different fact-checking results. We aimed to bring up the best practice of fact-checking for the general people based on our analyses.
Spurious Correlations in Machine Learning: A Survey
Machine learning systems are known to be sensitive to spurious correlations between biased features of the inputs (e.g., background, texture, and secondary objects) and the corresponding labels. These features and their correlations with the labels are known as "spurious" because they tend to change with shifts in real-world data distributions, which can negatively impact the model's generalization and robustness. In this survey, we provide a comprehensive review of this issue, along with a taxonomy of current state-of-the-art methods for addressing spurious correlations in machine learning models. Additionally, we summarize existing datasets, benchmarks, and metrics to aid future research. The paper concludes with a discussion of the recent advancements and future research challenges in this field, aiming to provide valuable insights for researchers in the related domains.
Detecting Fake News Using Machine Learning : A Systematic Literature Review
Internet is one of the important inventions and a large number of persons are its users. These persons use this for different purposes. There are different social media platforms that are accessible to these users. Any user can make a post or spread the news through the online platforms. These platforms do not verify the users or their posts. So some of the users try to spread fake news through these platforms. These news can be propaganda against an individual, society, organization or political party. A human being is unable to detect all these fake news. So there is a need for machine learning classifiers that can detect these fake news automatically. Use of machine learning classifiers for detecting fake news is described in this systematic literature review.
Detecting Fallacies in Climate Misinformation: A Technocognitive Approach to Identifying Misleading Argumentation
Misinformation about climate change is a complex societal issue requiring holistic, interdisciplinary solutions at the intersection between technology and psychology. One proposed solution is a "technocognitive" approach, involving the synthesis of psychological and computer science research. Psychological research has identified that interventions in response to misinformation require both fact-based (e.g., factual explanations) and technique-based (e.g., explanations of misleading techniques) content. However, little progress has been made on documenting and detecting fallacies in climate misinformation. In this study, we apply a previously developed critical thinking methodology for deconstructing climate misinformation, in order to develop a dataset mapping different types of climate misinformation to reasoning fallacies. This dataset is used to train a model to detect fallacies in climate misinformation. Our study shows F1 scores that are 2.5 to 3.5 better than previous works. The fallacies that are easiest to detect include fake experts and anecdotal arguments, while fallacies that require background knowledge, such as oversimplification, misrepresentation, and slothful induction, are relatively more difficult to detect. This research lays the groundwork for development of solutions where automatically detected climate misinformation can be countered with generative technique-based corrections.
Semi-Supervised Exaggeration Detection of Health Science Press Releases
Public trust in science depends on honest and factual communication of scientific papers. However, recent studies have demonstrated a tendency of news media to misrepresent scientific papers by exaggerating their findings. Given this, we present a formalization of and study into the problem of exaggeration detection in science communication. While there are an abundance of scientific papers and popular media articles written about them, very rarely do the articles include a direct link to the original paper, making data collection challenging. We address this by curating a set of labeled press release/abstract pairs from existing expert annotated studies on exaggeration in press releases of scientific papers suitable for benchmarking the performance of machine learning models on the task. Using limited data from this and previous studies on exaggeration detection in science, we introduce MT-PET, a multi-task version of Pattern Exploiting Training (PET), which leverages knowledge from complementary cloze-style QA tasks to improve few-shot learning. We demonstrate that MT-PET outperforms PET and supervised learning both when data is limited, as well as when there is an abundance of data for the main task.
Hoaxpedia: A Unified Wikipedia Hoax Articles Dataset
Hoaxes are a recognised form of disinformation created deliberately, with potential serious implications in the credibility of reference knowledge resources such as Wikipedia. What makes detecting Wikipedia hoaxes hard is that they often are written according to the official style guidelines. In this work, we first provide a systematic analysis of the similarities and discrepancies between legitimate and hoax Wikipedia articles, and introduce Hoaxpedia, a collection of 311 Hoax articles (from existing literature as well as official Wikipedia lists) alongside semantically similar real articles. We report results of binary classification experiments in the task of predicting whether a Wikipedia article is real or hoax, and analyze several settings as well as a range of language models. Our results suggest that detecting deceitful content in Wikipedia based on content alone, despite not having been explored much in the past, is a promising direction.
A Survey on the Role of Crowds in Combating Online Misinformation: Annotators, Evaluators, and Creators
Online misinformation poses a global risk with significant real-world consequences. To combat misinformation, current research relies on professionals like journalists and fact-checkers for annotating and debunking misinformation, and develops automated machine learning methods for detecting misinformation. Complementary to these approaches, recent research has increasingly concentrated on utilizing the power of ordinary social media users, a.k.a. "crowd", who act as eyes-on-the-ground proactively questioning and countering misinformation. Notably, recent studies show that 96% of counter-misinformation responses originate from them. Acknowledging their prominent role, we present the first systematic and comprehensive survey of research papers that actively leverage the crowds to combat misinformation. We first identify 88 papers related to crowd-based efforts, following a meticulous annotation process adhering to the PRISMA framework. We then present key statistics related to misinformation, counter-misinformation, and crowd input in different formats and topics. Upon holistic analysis of the papers, we introduce a novel taxonomy of the roles played by the crowds: (i)annotators who actively identify misinformation; (ii)evaluators who assess counter-misinformation effectiveness; (iii)creators who create counter-misinformation. This taxonomy explores the crowd's capabilities in misinformation detection, identifies prerequisites for effective counter-misinformation, and analyzes crowd-generated counter-misinformation. Then, we delve into (i)distinguishing individual, collaborative, and machine-assisted labeling for annotators; (ii)analyzing the effectiveness of counter-misinformation through surveys, interviews, and in-lab experiments for evaluators; and (iii)characterizing creation patterns and creator profiles for creators. Finally, we outline potential future research in this field.
Patience is all you need! An agentic system for performing scientific literature review
Large language models (LLMs) have grown in their usage to provide support for question answering across numerous disciplines. The models on their own have already shown promise for answering basic questions, however fail quickly where expert domain knowledge is required or the question is nuanced. Scientific research often involves searching for relevant literature, distilling pertinent information from that literature and analysing how the findings support or contradict one another. The information is often encapsulated in the full text body of research articles, rather than just in the abstracts. Statements within these articles frequently require the wider article context to be fully understood. We have built an LLM-based system that performs such search and distillation of information encapsulated in scientific literature, and we evaluate our keyword based search and information distillation system against a set of biology related questions from previously released literature benchmarks. We demonstrate sparse retrieval methods exhibit results close to state of the art without the need for dense retrieval, with its associated infrastructure and complexity overhead. We also show how to increase the coverage of relevant documents for literature review generation.
Decoding the Sociotechnical Dimensions of Digital Misinformation: A Comprehensive Literature Review
This paper presents a systematic literature review in Computer Science that provide an overview of the initiatives related to digital misinformation. This is an exploratory study that covers research from 1993 to 2020, focusing on the investigation of the phenomenon of misinformation. The review consists of 788 studies from SCOPUS, IEEE, and ACM digital libraries, synthesizing the primary research directions and sociotechnical challenges. These challenges are classified into Physical, Empirical, Syntactic, Semantic, Pragmatic, and Social dimensions, drawing from Organizational Semiotics. The mapping identifies issues related to the concept of misinformation, highlights deficiencies in mitigation strategies, discusses challenges in approaching stakeholders, and unveils various sociotechnical aspects relevant to understanding and mitigating the harmful effects of digital misinformation. As contributions, this study present a novel categorization of mitigation strategies, a sociotechnical taxonomy for classifying types of false information and elaborate on the inter-relation of sociotechnical aspects and their impacts.
Truthful AI: Developing and governing AI that does not lie
In many contexts, lying -- the use of verbal falsehoods to deceive -- is harmful. While lying has traditionally been a human affair, AI systems that make sophisticated verbal statements are becoming increasingly prevalent. This raises the question of how we should limit the harm caused by AI "lies" (i.e. falsehoods that are actively selected for). Human truthfulness is governed by social norms and by laws (against defamation, perjury, and fraud). Differences between AI and humans present an opportunity to have more precise standards of truthfulness for AI, and to have these standards rise over time. This could provide significant benefits to public epistemics and the economy, and mitigate risks of worst-case AI futures. Establishing norms or laws of AI truthfulness will require significant work to: (1) identify clear truthfulness standards; (2) create institutions that can judge adherence to those standards; and (3) develop AI systems that are robustly truthful. Our initial proposals for these areas include: (1) a standard of avoiding "negligent falsehoods" (a generalisation of lies that is easier to assess); (2) institutions to evaluate AI systems before and after real-world deployment; and (3) explicitly training AI systems to be truthful via curated datasets and human interaction. A concerning possibility is that evaluation mechanisms for eventual truthfulness standards could be captured by political interests, leading to harmful censorship and propaganda. Avoiding this might take careful attention. And since the scale of AI speech acts might grow dramatically over the coming decades, early truthfulness standards might be particularly important because of the precedents they set.
Tortured phrases: A dubious writing style emerging in science. Evidence of critical issues affecting established journals
Probabilistic text generators have been used to produce fake scientific papers for more than a decade. Such nonsensical papers are easily detected by both human and machine. Now more complex AI-powered generation techniques produce texts indistinguishable from that of humans and the generation of scientific texts from a few keywords has been documented. Our study introduces the concept of tortured phrases: unexpected weird phrases in lieu of established ones, such as 'counterfeit consciousness' instead of 'artificial intelligence.' We combed the literature for tortured phrases and study one reputable journal where these concentrated en masse. Hypothesising the use of advanced language models we ran a detector on the abstracts of recent articles of this journal and on several control sets. The pairwise comparisons reveal a concentration of abstracts flagged as 'synthetic' in the journal. We also highlight irregularities in its operation, such as abrupt changes in editorial timelines. We substantiate our call for investigation by analysing several individual dubious articles, stressing questionable features: tortured writing style, citation of non-existent literature, and unacknowledged image reuse. Surprisingly, some websites offer to rewrite texts for free, generating gobbledegook full of tortured phrases. We believe some authors used rewritten texts to pad their manuscripts. We wish to raise the awareness on publications containing such questionable AI-generated or rewritten texts that passed (poor) peer review. Deception with synthetic texts threatens the integrity of the scientific literature.
Awareness in Practice: Tensions in Access to Sensitive Attribute Data for Antidiscrimination
Organizations cannot address demographic disparities that they cannot see. Recent research on machine learning and fairness has emphasized that awareness of sensitive attributes, such as race and sex, is critical to the development of interventions. However, on the ground, the existence of these data cannot be taken for granted. This paper uses the domains of employment, credit, and healthcare in the United States to surface conditions that have shaped the availability of sensitive attribute data. For each domain, we describe how and when private companies collect or infer sensitive attribute data for antidiscrimination purposes. An inconsistent story emerges: Some companies are required by law to collect sensitive attribute data, while others are prohibited from doing so. Still others, in the absence of legal mandates, have determined that collection and imputation of these data are appropriate to address disparities. This story has important implications for fairness research and its future applications. If companies that mediate access to life opportunities are unable or hesitant to collect or infer sensitive attribute data, then proposed techniques to detect and mitigate bias in machine learning models might never be implemented outside the lab. We conclude that today's legal requirements and corporate practices, while highly inconsistent across domains, offer lessons for how to approach the collection and inference of sensitive data in appropriate circumstances. We urge stakeholders, including machine learning practitioners, to actively help chart a path forward that takes both policy goals and technical needs into account.
Retrieval Augmented Fact Verification by Synthesizing Contrastive Arguments
The rapid propagation of misinformation poses substantial risks to public interest. To combat misinformation, large language models (LLMs) are adapted to automatically verify claim credibility. Nevertheless, existing methods heavily rely on the embedded knowledge within LLMs and / or black-box APIs for evidence collection, leading to subpar performance with smaller LLMs or upon unreliable context. In this paper, we propose retrieval augmented fact verification through the synthesis of contrasting arguments (RAFTS). Upon input claims, RAFTS starts with evidence retrieval, where we design a retrieval pipeline to collect and re-rank relevant documents from verifiable sources. Then, RAFTS forms contrastive arguments (i.e., supporting or refuting) conditioned on the retrieved evidence. In addition, RAFTS leverages an embedding model to identify informative demonstrations, followed by in-context prompting to generate the prediction and explanation. Our method effectively retrieves relevant documents as evidence and evaluates arguments from varying perspectives, incorporating nuanced information for fine-grained decision-making. Combined with informative in-context examples as prior, RAFTS achieves significant improvements to supervised and LLM baselines without complex prompts. We demonstrate the effectiveness of our method through extensive experiments, where RAFTS can outperform GPT-based methods with a significantly smaller 7B LLM.
FEVER: a large-scale dataset for Fact Extraction and VERification
In this paper we introduce a new publicly available dataset for verification against textual sources, FEVER: Fact Extraction and VERification. It consists of 185,445 claims generated by altering sentences extracted from Wikipedia and subsequently verified without knowledge of the sentence they were derived from. The claims are classified as Supported, Refuted or NotEnoughInfo by annotators achieving 0.6841 in Fleiss kappa. For the first two classes, the annotators also recorded the sentence(s) forming the necessary evidence for their judgment. To characterize the challenge of the dataset presented, we develop a pipeline approach and compare it to suitably designed oracles. The best accuracy we achieve on labeling a claim accompanied by the correct evidence is 31.87%, while if we ignore the evidence we achieve 50.91%. Thus we believe that FEVER is a challenging testbed that will help stimulate progress on claim verification against textual sources.
AMMeBa: A Large-Scale Survey and Dataset of Media-Based Misinformation In-The-Wild
The prevalence and harms of online misinformation is a perennial concern for internet platforms, institutions and society at large. Over time, information shared online has become more media-heavy and misinformation has readily adapted to these new modalities. The rise of generative AI-based tools, which provide widely-accessible methods for synthesizing realistic audio, images, video and human-like text, have amplified these concerns. Despite intense interest on the part of the public and significant press coverage, quantitative information on the prevalence and modality of media-based misinformation remains scarce. Here, we present the results of a two-year study using human raters to annotate online media-based misinformation, mostly focusing on images, based on claims assessed in a large sample of publicly-accessible fact checks with the ClaimReview markup. We present an image typology, designed to capture aspects of the image and manipulation relevant to the image's role in the misinformation claim. We visualize the distribution of these types over time. We show the the rise of generative AI-based content in misinformation claims, and that it's commonality is a relatively recent phenomenon, occurring significantly after heavy press coverage. We also show "simple" methods dominated historically, particularly context manipulations, and continued to hold a majority as of the end of data collection in November 2023. The dataset, Annotated Misinformation, Media-Based (AMMeBa), is publicly-available, and we hope that these data will serve as both a means of evaluating mitigation methods in a realistic setting and as a first-of-its-kind census of the types and modalities of online misinformation.
Combating Disinformation in a Social Media Age
The creation, dissemination, and consumption of disinformation and fabricated content on social media is a growing concern, especially with the ease of access to such sources, and the lack of awareness of the existence of such false information. In this paper, we present an overview of the techniques explored to date for the combating of disinformation with various forms. We introduce different forms of disinformation, discuss factors related to the spread of disinformation, elaborate on the inherent challenges in detecting disinformation, and show some approaches to mitigating disinformation via education, research, and collaboration. Looking ahead, we present some promising future research directions on disinformation.
A Drop of Ink Makes a Million Think: The Spread of False Information in Large Language Models
Large language models (LLMs) have gained increasing prominence in artificial intelligence, making a profound impact on society and various industries like business and science. However, the presence of false information on the internet and in text corpus poses a significant risk to the reliability and safety of LLMs, underscoring the urgent need to understand the mechanisms of how false information influences the behaviors of LLMs. In this paper, we dive into this problem and investigate how false information spreads in LLMs and affects related responses. Specifically, in our series of experiments, we investigate different factors that can influence the spread of information in LLMs by comparing three degrees of information relevance (direct, indirect, and peripheral), four information source styles (Twitter, web blogs, news reports, and research papers) and two common knowledge injection paradigms (in-context injection and learning-based injection). The experimental results show that (1)False information will spread and contaminate related memories in LLMs via a semantic diffusion process, i.e., false information has global detrimental effects beyond its direct impact. (2)Current LLMs are susceptible to authority bias, i.e., LLMs are more likely to follow false information presented in trustworthy styles such as news reports and research papers, which usually cause deeper and wider pollution of information. (3)Current LLMs are more sensitive to false information through in-context injection than through learning-based injection, which severely challenges the reliability and safety of LLMs even when all training data are trusty and correct. The above findings raise the need for new false information defense algorithms to address the global impact of false information, and new alignment algorithms to unbiasedly lead LLMs to follow essential human values rather than superficial patterns.
The COVID-19 Infodemic: Can the Crowd Judge Recent Misinformation Objectively?
Misinformation is an ever increasing problem that is difficult to solve for the research community and has a negative impact on the society at large. Very recently, the problem has been addressed with a crowdsourcing-based approach to scale up labeling efforts: to assess the truthfulness of a statement, instead of relying on a few experts, a crowd of (non-expert) judges is exploited. We follow the same approach to study whether crowdsourcing is an effective and reliable method to assess statements truthfulness during a pandemic. We specifically target statements related to the COVID-19 health emergency, that is still ongoing at the time of the study and has arguably caused an increase of the amount of misinformation that is spreading online (a phenomenon for which the term "infodemic" has been used). By doing so, we are able to address (mis)information that is both related to a sensitive and personal issue like health and very recent as compared to when the judgment is done: two issues that have not been analyzed in related work. In our experiment, crowd workers are asked to assess the truthfulness of statements, as well as to provide evidence for the assessments as a URL and a text justification. Besides showing that the crowd is able to accurately judge the truthfulness of the statements, we also report results on many different aspects, including: agreement among workers, the effect of different aggregation functions, of scales transformations, and of workers background / bias. We also analyze workers behavior, in terms of queries submitted, URLs found / selected, text justifications, and other behavioral data like clicks and mouse actions collected by means of an ad hoc logger.
SimANS: Simple Ambiguous Negatives Sampling for Dense Text Retrieval
Sampling proper negatives from a large document pool is vital to effectively train a dense retrieval model. However, existing negative sampling strategies suffer from the uninformative or false negative problem. In this work, we empirically show that according to the measured relevance scores, the negatives ranked around the positives are generally more informative and less likely to be false negatives. Intuitively, these negatives are not too hard (may be false negatives) or too easy (uninformative). They are the ambiguous negatives and need more attention during training. Thus, we propose a simple ambiguous negatives sampling method, SimANS, which incorporates a new sampling probability distribution to sample more ambiguous negatives. Extensive experiments on four public and one industry datasets show the effectiveness of our approach. We made the code and models publicly available in https://github.com/microsoft/SimXNS.
SEPSIS: I Can Catch Your Lies -- A New Paradigm for Deception Detection
Deception is the intentional practice of twisting information. It is a nuanced societal practice deeply intertwined with human societal evolution, characterized by a multitude of facets. This research explores the problem of deception through the lens of psychology, employing a framework that categorizes deception into three forms: lies of omission, lies of commission, and lies of influence. The primary focus of this study is specifically on investigating only lies of omission. We propose a novel framework for deception detection leveraging NLP techniques. We curated an annotated dataset of 876,784 samples by amalgamating a popular large-scale fake news dataset and scraped news headlines from the Twitter handle of Times of India, a well-known Indian news media house. Each sample has been labeled with four layers, namely: (i) the type of omission (speculation, bias, distortion, sounds factual, and opinion), (ii) colors of lies(black, white, etc), and (iii) the intention of such lies (to influence, etc) (iv) topic of lies (political, educational, religious, etc). We present a novel multi-task learning pipeline that leverages the dataless merging of fine-tuned language models to address the deception detection task mentioned earlier. Our proposed model achieved an F1 score of 0.87, demonstrating strong performance across all layers including the type, color, intent, and topic aspects of deceptive content. Finally, our research explores the relationship between lies of omission and propaganda techniques. To accomplish this, we conducted an in-depth analysis, uncovering compelling findings. For instance, our analysis revealed a significant correlation between loaded language and opinion, shedding light on their interconnectedness. To encourage further research in this field, we will be making the models and dataset available with the MIT License, making it favorable for open-source research.
On a Seldom Oversight in Fermi's Calculations: Seventy Years Later
We discuss an unfortunate mistake, for a Dirac free particle, in the last Fermi lecture notes on quantum mechanics, in a course given at the University of Chicago in winter and spring of 1954. As is demonstrated, the correct result can be obtained by a simple matrix multiplication. An attempt to collect a relevant bibliography is made.
Yesterday's News: Benchmarking Multi-Dimensional Out-of-Distribution Generalisation of Misinformation Detection Models
This paper introduces misinfo-general, a benchmark dataset for evaluating misinformation models' ability to perform out-of-distribution generalisation. Misinformation changes rapidly, much quicker than moderators can annotate at scale, resulting in a shift between the training and inference data distributions. As a result, misinformation models need to be able to perform out-of-distribution generalisation, an understudied problem in existing datasets. We identify 6 axes of generalisation-time, event, topic, publisher, political bias, misinformation type-and design evaluation procedures for each. We also analyse some baseline models, highlighting how these fail important desiderata.
SemEval-2017 Task 8: RumourEval: Determining rumour veracity and support for rumours
Media is full of false claims. Even Oxford Dictionaries named "post-truth" as the word of 2016. This makes it more important than ever to build systems that can identify the veracity of a story, and the kind of discourse there is around it. RumourEval is a SemEval shared task that aims to identify and handle rumours and reactions to them, in text. We present an annotation scheme, a large dataset covering multiple topics - each having their own families of claims and replies - and use these to pose two concrete challenges as well as the results achieved by participants on these challenges.
A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers
Readers of academic research papers often read with the goal of answering specific questions. Question Answering systems that can answer those questions can make consumption of the content much more efficient. However, building such tools requires data that reflect the difficulty of the task arising from complex reasoning about claims made in multiple parts of a paper. In contrast, existing information-seeking question answering datasets usually contain questions about generic factoid-type information. We therefore present QASPER, a dataset of 5,049 questions over 1,585 Natural Language Processing papers. Each question is written by an NLP practitioner who read only the title and abstract of the corresponding paper, and the question seeks information present in the full text. The questions are then answered by a separate set of NLP practitioners who also provide supporting evidence to answers. We find that existing models that do well on other QA tasks do not perform well on answering these questions, underperforming humans by at least 27 F1 points when answering them from entire papers, motivating further research in document-grounded, information-seeking QA, which our dataset is designed to facilitate.
Article Reranking by Memory-Enhanced Key Sentence Matching for Detecting Previously Fact-Checked Claims
False claims that have been previously fact-checked can still spread on social media. To mitigate their continual spread, detecting previously fact-checked claims is indispensable. Given a claim, existing works focus on providing evidence for detection by reranking candidate fact-checking articles (FC-articles) retrieved by BM25. However, these performances may be limited because they ignore the following characteristics of FC-articles: (1) claims are often quoted to describe the checked events, providing lexical information besides semantics; (2) sentence templates to introduce or debunk claims are common across articles, providing pattern information. Models that ignore the two aspects only leverage semantic relevance and may be misled by sentences that describe similar but irrelevant events. In this paper, we propose a novel reranker, MTM (Memory-enhanced Transformers for Matching) to rank FC-articles using key sentences selected with event (lexical and semantic) and pattern information. For event information, we propose a ROUGE-guided Transformer which is finetuned with regression of ROUGE. For pattern information, we generate pattern vectors for matching with sentences. By fusing event and pattern information, we select key sentences to represent an article and then predict if the article fact-checks the given claim using the claim, key sentences, and patterns. Experiments on two real-world datasets show that MTM outperforms existing methods. Human evaluation proves that MTM can capture key sentences for explanations. The code and the dataset are at https://github.com/ICTMCG/MTM.
Stop Clickbait: Detecting and Preventing Clickbaits in Online News Media
Most of the online news media outlets rely heavily on the revenues generated from the clicks made by their readers, and due to the presence of numerous such outlets, they need to compete with each other for reader attention. To attract the readers to click on an article and subsequently visit the media site, the outlets often come up with catchy headlines accompanying the article links, which lure the readers to click on the link. Such headlines are known as Clickbaits. While these baits may trick the readers into clicking, in the long run, clickbaits usually don't live up to the expectation of the readers, and leave them disappointed. In this work, we attempt to automatically detect clickbaits and then build a browser extension which warns the readers of different media sites about the possibility of being baited by such headlines. The extension also offers each reader an option to block clickbaits she doesn't want to see. Then, using such reader choices, the extension automatically blocks similar clickbaits during her future visits. We run extensive offline and online experiments across multiple media sites and find that the proposed clickbait detection and the personalized blocking approaches perform very well achieving 93% accuracy in detecting and 89% accuracy in blocking clickbaits.
Audio Watermarking with Error Correction
In recent times, communication through the internet has tremendously facilitated the distribution of multimedia data. Although this is indubitably a boon, one of its repercussions is that it has also given impetus to the notorious issue of online music piracy. Unethical attempts can also be made to deliberately alter such copyrighted data and thus, misuse it. Copyright violation by means of unauthorized distribution, as well as unauthorized tampering of copyrighted audio data is an important technological and research issue. Audio watermarking has been proposed as a solution to tackle this issue. The main purpose of audio watermarking is to protect against possible threats to the audio data and in case of copyright violation or unauthorized tampering, authenticity of such data can be disputed by virtue of audio watermarking.
Q_{bias} -- A Dataset on Media Bias in Search Queries and Query Suggestions
This publication describes the motivation and generation of Q_{bias}, a large dataset of Google and Bing search queries, a scraping tool and dataset for biased news articles, as well as language models for the investigation of bias in online search. Web search engines are a major factor and trusted source in information search, especially in the political domain. However, biased information can influence opinion formation and lead to biased opinions. To interact with search engines, users formulate search queries and interact with search query suggestions provided by the search engines. A lack of datasets on search queries inhibits research on the subject. We use Q_{bias} to evaluate different approaches to fine-tuning transformer-based language models with the goal of producing models capable of biasing text with left and right political stance. Additionally to this work we provided datasets and language models for biasing texts that allow further research on bias in online information search.
Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs
With the rapid evolution of large language models (LLMs), new and hard-to-predict harmful capabilities are emerging. This requires developers to be able to identify risks through the evaluation of "dangerous capabilities" in order to responsibly deploy LLMs. In this work, we collect the first open-source dataset to evaluate safeguards in LLMs, and deploy safer open-source LLMs at a low cost. Our dataset is curated and filtered to consist only of instructions that responsible language models should not follow. We annotate and assess the responses of six popular LLMs to these instructions. Based on our annotation, we proceed to train several BERT-like classifiers, and find that these small classifiers can achieve results that are comparable with GPT-4 on automatic safety evaluation. Warning: this paper contains example data that may be offensive, harmful, or biased.
Can Community Notes Replace Professional Fact-Checkers?
Two commonly-employed strategies to combat the rise of misinformation on social media are (i) fact-checking by professional organisations and (ii) community moderation by platform users. Policy changes by Twitter/X and, more recently, Meta, signal a shift away from partnerships with fact-checking organisations and towards an increased reliance on crowdsourced community notes. However, the extent and nature of dependencies between fact-checking and helpful community notes remain unclear. To address these questions, we use language models to annotate a large corpus of Twitter/X community notes with attributes such as topic, cited sources, and whether they refute claims tied to broader misinformation narratives. Our analysis reveals that community notes cite fact-checking sources up to five times more than previously reported. Fact-checking is especially crucial for notes on posts linked to broader narratives, which are twice as likely to reference fact-checking sources compared to other sources. In conclusion, our results show that successful community moderation heavily relies on professional fact-checking.
Reinforcement Learning-based Counter-Misinformation Response Generation: A Case Study of COVID-19 Vaccine Misinformation
The spread of online misinformation threatens public health, democracy, and the broader society. While professional fact-checkers form the first line of defense by fact-checking popular false claims, they do not engage directly in conversations with misinformation spreaders. On the other hand, non-expert ordinary users act as eyes-on-the-ground who proactively counter misinformation -- recent research has shown that 96% counter-misinformation responses are made by ordinary users. However, research also found that 2/3 times, these responses are rude and lack evidence. This work seeks to create a counter-misinformation response generation model to empower users to effectively correct misinformation. This objective is challenging due to the absence of datasets containing ground-truth of ideal counter-misinformation responses, and the lack of models that can generate responses backed by communication theories. In this work, we create two novel datasets of misinformation and counter-misinformation response pairs from in-the-wild social media and crowdsourcing from college-educated students. We annotate the collected data to distinguish poor from ideal responses that are factual, polite, and refute misinformation. We propose MisinfoCorrect, a reinforcement learning-based framework that learns to generate counter-misinformation responses for an input misinformation post. The model rewards the generator to increase the politeness, factuality, and refutation attitude while retaining text fluency and relevancy. Quantitative and qualitative evaluation shows that our model outperforms several baselines by generating high-quality counter-responses. This work illustrates the promise of generative text models for social good -- here, to help create a safe and reliable information ecosystem. The code and data is accessible on https://github.com/claws-lab/MisinfoCorrect.
Do Language Models Know When They're Hallucinating References?
State-of-the-art language models (LMs) are notoriously susceptible to generating hallucinated information. Such inaccurate outputs not only undermine the reliability of these models but also limit their use and raise serious concerns about misinformation and propaganda. In this work, we focus on hallucinated book and article references and present them as the "model organism" of language model hallucination research, due to their frequent and easy-to-discern nature. We posit that if a language model cites a particular reference in its output, then it should ideally possess sufficient information about its authors and content, among other relevant details. Using this basic insight, we illustrate that one can identify hallucinated references without ever consulting any external resources, by asking a set of direct or indirect queries to the language model about the references. These queries can be considered as "consistency checks." Our findings highlight that while LMs, including GPT-4, often produce inconsistent author lists for hallucinated references, they also often accurately recall the authors of real references. In this sense, the LM can be said to "know" when it is hallucinating references. Furthermore, these findings show how hallucinated references can be dissected to shed light on their nature. Replication code and results can be found at https://github.com/microsoft/hallucinated-references.
AI Deception: A Survey of Examples, Risks, and Potential Solutions
This paper argues that a range of current AI systems have learned how to deceive humans. We define deception as the systematic inducement of false beliefs in the pursuit of some outcome other than the truth. We first survey empirical examples of AI deception, discussing both special-use AI systems (including Meta's CICERO) built for specific competitive situations, and general-purpose AI systems (such as large language models). Next, we detail several risks from AI deception, such as fraud, election tampering, and losing control of AI systems. Finally, we outline several potential solutions to the problems posed by AI deception: first, regulatory frameworks should subject AI systems that are capable of deception to robust risk-assessment requirements; second, policymakers should implement bot-or-not laws; and finally, policymakers should prioritize the funding of relevant research, including tools to detect AI deception and to make AI systems less deceptive. Policymakers, researchers, and the broader public should work proactively to prevent AI deception from destabilizing the shared foundations of our society.
CoAID: COVID-19 Healthcare Misinformation Dataset
As the COVID-19 virus quickly spreads around the world, unfortunately, misinformation related to COVID-19 also gets created and spreads like wild fire. Such misinformation has caused confusion among people, disruptions in society, and even deadly consequences in health problems. To be able to understand, detect, and mitigate such COVID-19 misinformation, therefore, has not only deep intellectual values but also huge societal impacts. To help researchers combat COVID-19 health misinformation, therefore, we present CoAID (Covid-19 heAlthcare mIsinformation Dataset), with diverse COVID-19 healthcare misinformation, including fake news on websites and social platforms, along with users' social engagement about such news. CoAID includes 4,251 news, 296,000 related user engagements, 926 social platform posts about COVID-19, and ground truth labels. The dataset is available at: https://github.com/cuilimeng/CoAID.
Detection Avoidance Techniques for Large Language Models
The increasing popularity of large language models has not only led to widespread use but has also brought various risks, including the potential for systematically spreading fake news. Consequently, the development of classification systems such as DetectGPT has become vital. These detectors are vulnerable to evasion techniques, as demonstrated in an experimental series: Systematic changes of the generative models' temperature proofed shallow learning-detectors to be the least reliable. Fine-tuning the generative model via reinforcement learning circumvented BERT-based-detectors. Finally, rephrasing led to a >90\% evasion of zero-shot-detectors like DetectGPT, although texts stayed highly similar to the original. A comparison with existing work highlights the better performance of the presented methods. Possible implications for society and further research are discussed.
Rethinking Search: Making Domain Experts out of Dilettantes
When experiencing an information need, users want to engage with a domain expert, but often turn to an information retrieval system, such as a search engine, instead. Classical information retrieval systems do not answer information needs directly, but instead provide references to (hopefully authoritative) answers. Successful question answering systems offer a limited corpus created on-demand by human experts, which is neither timely nor scalable. Pre-trained language models, by contrast, are capable of directly generating prose that may be responsive to an information need, but at present they are dilettantes rather than domain experts -- they do not have a true understanding of the world, they are prone to hallucinating, and crucially they are incapable of justifying their utterances by referring to supporting documents in the corpus they were trained over. This paper examines how ideas from classical information retrieval and pre-trained language models can be synthesized and evolved into systems that truly deliver on the promise of domain expert advice.
Learning to Determine the Quality of News Headlines
Today, most newsreaders read the online version of news articles rather than traditional paper-based newspapers. Also, news media publishers rely heavily on the income generated from subscriptions and website visits made by newsreaders. Thus, online user engagement is a very important issue for online newspapers. Much effort has been spent on writing interesting headlines to catch the attention of online users. On the other hand, headlines should not be misleading (e.g., clickbaits); otherwise, readers would be disappointed when reading the content. In this paper, we propose four indicators to determine the quality of published news headlines based on their click count and dwell time, which are obtained by website log analysis. Then, we use soft target distribution of the calculated quality indicators to train our proposed deep learning model which can predict the quality of unpublished news headlines. The proposed model not only processes the latent features of both headline and body of the article to predict its headline quality but also considers the semantic relation between headline and body as well. To evaluate our model, we use a real dataset from a major Canadian newspaper. Results show our proposed model outperforms other state-of-the-art NLP models.
The Role of the Crowd in Countering Misinformation: A Case Study of the COVID-19 Infodemic
Fact checking by professionals is viewed as a vital defense in the fight against misinformation.While fact checking is important and its impact has been significant, fact checks could have limited visibility and may not reach the intended audience, such as those deeply embedded in polarized communities. Concerned citizens (i.e., the crowd), who are users of the platforms where misinformation appears, can play a crucial role in disseminating fact-checking information and in countering the spread of misinformation. To explore if this is the case, we conduct a data-driven study of misinformation on the Twitter platform, focusing on tweets related to the COVID-19 pandemic, analyzing the spread of misinformation, professional fact checks, and the crowd response to popular misleading claims about COVID-19. In this work, we curate a dataset of false claims and statements that seek to challenge or refute them. We train a classifier to create a novel dataset of 155,468 COVID-19-related tweets, containing 33,237 false claims and 33,413 refuting arguments.Our findings show that professional fact-checking tweets have limited volume and reach. In contrast, we observe that the surge in misinformation tweets results in a quick response and a corresponding increase in tweets that refute such misinformation. More importantly, we find contrasting differences in the way the crowd refutes tweets, some tweets appear to be opinions, while others contain concrete evidence, such as a link to a reputed source. Our work provides insights into how misinformation is organically countered in social platforms by some of their users and the role they play in amplifying professional fact checks.These insights could lead to development of tools and mechanisms that can empower concerned citizens in combating misinformation. The code and data can be found in http://claws.cc.gatech.edu/covid_counter_misinformation.html.
NLP Evaluation in trouble: On the Need to Measure LLM Data Contamination for each Benchmark
In this position paper, we argue that the classical evaluation on Natural Language Processing (NLP) tasks using annotated benchmarks is in trouble. The worst kind of data contamination happens when a Large Language Model (LLM) is trained on the test split of a benchmark, and then evaluated in the same benchmark. The extent of the problem is unknown, as it is not straightforward to measure. Contamination causes an overestimation of the performance of a contaminated model in a target benchmark and associated task with respect to their non-contaminated counterparts. The consequences can be very harmful, with wrong scientific conclusions being published while other correct ones are discarded. This position paper defines different levels of data contamination and argues for a community effort, including the development of automatic and semi-automatic measures to detect when data from a benchmark was exposed to a model, and suggestions for flagging papers with conclusions that are compromised by data contamination.
An Old-Fashioned Framework for Machine Learning in Turbulence Modeling
The objective is to provide clear and well-motivated guidance to Machine Learning (ML) teams, founded on our experience in empirical turbulence modeling. Guidance is also needed for modeling outside ML. ML is not yet successful in turbulence modeling, and many papers have produced unusable proposals either due to errors in math or physics, or to severe overfitting. We believe that "Turbulence Culture" (TC) takes years to learn and is difficult to convey especially considering the modern lack of time for careful study; important facts which are self-evident after a career in turbulence research and modeling and extensive reading are easy to miss. In addition, many of them are not absolute facts, a consequence of the gaps in our understanding of turbulence and the weak connection of models to first principles. Some of the mathematical facts are rigorous, but the physical aspects often are not. Turbulence models are surprisingly arbitrary. Disagreement between experts confuses the new entrants. In addition, several key properties of the models are ascertained through non-trivial analytical properties of the differential equations, which puts them out of reach of purely data-driven ML-type approaches. The best example is the crucial behavior of the model at the edge of the turbulent region (ETR). The knowledge we wish to put out here may be divided into "Mission" and "Requirements," each combining physics and mathematics. Clear lists of "Hard" and "Soft" constraints are presented. A concrete example of how DNS data could be used, possibly allied with ML, is first carried through and illustrates the large number of decisions needed. Our focus is on creating effective products which will empower CFD, rather than on publications.
A Survey on the Honesty of Large Language Models
Honesty is a fundamental principle for aligning large language models (LLMs) with human values, requiring these models to recognize what they know and don't know and be able to faithfully express their knowledge. Despite promising, current LLMs still exhibit significant dishonest behaviors, such as confidently presenting wrong answers or failing to express what they know. In addition, research on the honesty of LLMs also faces challenges, including varying definitions of honesty, difficulties in distinguishing between known and unknown knowledge, and a lack of comprehensive understanding of related research. To address these issues, we provide a survey on the honesty of LLMs, covering its clarification, evaluation approaches, and strategies for improvement. Moreover, we offer insights for future research, aiming to inspire further exploration in this important area.
NELA-GT-2018: A Large Multi-Labelled News Dataset for The Study of Misinformation in News Articles
In this paper, we present a dataset of 713k articles collected between 02/2018-11/2018. These articles are collected directly from 194 news and media outlets including mainstream, hyper-partisan, and conspiracy sources. We incorporate ground truth ratings of the sources from 8 different assessment sites covering multiple dimensions of veracity, including reliability, bias, transparency, adherence to journalistic standards, and consumer trust. The NELA-GT-2018 dataset can be found at https://doi.org/10.7910/DVN/ULHLCB.
FEVEROUS: Fact Extraction and VERification Over Unstructured and Structured information
Fact verification has attracted a lot of attention in the machine learning and natural language processing communities, as it is one of the key methods for detecting misinformation. Existing large-scale benchmarks for this task have focused mostly on textual sources, i.e. unstructured information, and thus ignored the wealth of information available in structured formats, such as tables. In this paper we introduce a novel dataset and benchmark, Fact Extraction and VERification Over Unstructured and Structured information (FEVEROUS), which consists of 87,026 verified claims. Each claim is annotated with evidence in the form of sentences and/or cells from tables in Wikipedia, as well as a label indicating whether this evidence supports, refutes, or does not provide enough information to reach a verdict. Furthermore, we detail our efforts to track and minimize the biases present in the dataset and could be exploited by models, e.g. being able to predict the label without using evidence. Finally, we develop a baseline for verifying claims against text and tables which predicts both the correct evidence and verdict for 18% of the claims.
Researchy Questions: A Dataset of Multi-Perspective, Decompositional Questions for LLM Web Agents
Existing question answering (QA) datasets are no longer challenging to most powerful Large Language Models (LLMs). Traditional QA benchmarks like TriviaQA, NaturalQuestions, ELI5 and HotpotQA mainly study ``known unknowns'' with clear indications of both what information is missing, and how to find it to answer the question. Hence, good performance on these benchmarks provides a false sense of security. A yet unmet need of the NLP community is a bank of non-factoid, multi-perspective questions involving a great deal of unclear information needs, i.e. ``unknown uknowns''. We claim we can find such questions in search engine logs, which is surprising because most question-intent queries are indeed factoid. We present Researchy Questions, a dataset of search engine queries tediously filtered to be non-factoid, ``decompositional'' and multi-perspective. We show that users spend a lot of ``effort'' on these questions in terms of signals like clicks and session length, and that they are also challenging for GPT-4. We also show that ``slow thinking'' answering techniques, like decomposition into sub-questions shows benefit over answering directly. We release sim 100k Researchy Questions, along with the Clueweb22 URLs that were clicked.
The Many Dimensions of Truthfulness: Crowdsourcing Misinformation Assessments on a Multidimensional Scale
Recent work has demonstrated the viability of using crowdsourcing as a tool for evaluating the truthfulness of public statements. Under certain conditions such as: (1) having a balanced set of workers with different backgrounds and cognitive abilities; (2) using an adequate set of mechanisms to control the quality of the collected data; and (3) using a coarse grained assessment scale, the crowd can provide reliable identification of fake news. However, fake news are a subtle matter: statements can be just biased ("cherrypicked"), imprecise, wrong, etc. and the unidimensional truth scale used in existing work cannot account for such differences. In this paper we propose a multidimensional notion of truthfulness and we ask the crowd workers to assess seven different dimensions of truthfulness selected based on existing literature: Correctness, Neutrality, Comprehensibility, Precision, Completeness, Speaker's Trustworthiness, and Informativeness. We deploy a set of quality control mechanisms to ensure that the thousands of assessments collected on 180 publicly available fact-checked statements distributed over two datasets are of adequate quality, including a custom search engine used by the crowd workers to find web pages supporting their truthfulness assessments. A comprehensive analysis of crowdsourced judgments shows that: (1) the crowdsourced assessments are reliable when compared to an expert-provided gold standard; (2) the proposed dimensions of truthfulness capture independent pieces of information; (3) the crowdsourcing task can be easily learned by the workers; and (4) the resulting assessments provide a useful basis for a more complete estimation of statement truthfulness.
NELA-GT-2019: A Large Multi-Labelled News Dataset for The Study of Misinformation in News Articles
In this paper, we present an updated version of the NELA-GT-2018 dataset (N{\o}rregaard, Horne, and Adal{\i} 2019), entitled NELA-GT-2019. NELA-GT-2019 contains 1.12M news articles from 260 sources collected between January 1st 2019 and December 31st 2019. Just as with NELA-GT-2018, these sources come from a wide range of mainstream news sources and alternative news sources. Included with the dataset are source-level ground truth labels from 7 different assessment sites covering multiple dimensions of veracity. The NELA-GT-2019 dataset can be found at: https://doi.org/10.7910/DVN/O7FWPO
Characterizing and Predicting Social Correction on Twitter
Online misinformation has been a serious threat to public health and society. Social media users are known to reply to misinformation posts with counter-misinformation messages, which have been shown to be effective in curbing the spread of misinformation. This is called social correction. However, the characteristics of tweets that attract social correction versus those that do not remain unknown. To close the gap, we focus on answering the following two research questions: (1) ``Given a tweet, will it be countered by other users?'', and (2) ``If yes, what will be the magnitude of countering it?''. This exploration will help develop mechanisms to guide users' misinformation correction efforts and to measure disparity across users who get corrected. In this work, we first create a novel dataset with 690,047 pairs of misinformation tweets and counter-misinformation replies. Then, stratified analysis of tweet linguistic and engagement features as well as tweet posters' user attributes are conducted to illustrate the factors that are significant in determining whether a tweet will get countered. Finally, predictive classifiers are created to predict the likelihood of a misinformation tweet to get countered and the degree to which that tweet will be countered. The code and data is accessible on https://github.com/claws-lab/social-correction-twitter.
RumourEval 2019: Determining Rumour Veracity and Support for Rumours
This is the proposal for RumourEval-2019, which will run in early 2019 as part of that year's SemEval event. Since the first RumourEval shared task in 2017, interest in automated claim validation has greatly increased, as the dangers of "fake news" have become a mainstream concern. Yet automated support for rumour checking remains in its infancy. For this reason, it is important that a shared task in this area continues to provide a focus for effort, which is likely to increase. We therefore propose a continuation in which the veracity of further rumours is determined, and as previously, supportive of this goal, tweets discussing them are classified according to the stance they take regarding the rumour. Scope is extended compared with the first RumourEval, in that the dataset is substantially expanded to include Reddit as well as Twitter data, and additional languages are also included.
Relative Likelihood of Success in the Searches for Primitive versus Intelligent Extraterrestrial Life
We estimate the relative likelihood of success in the searches for primitive versus intelligent life on other planets. Taking into account the larger search volume for detectable artificial electromagnetic signals, we conclude that both searches should be performed concurrently, albeit with significantly more funding dedicated to primitive life. Based on the current federal funding allocated to the search for biosignatures, our analysis suggests that the search for extraterrestrial intelligence (SETI) may merit a federal funding level of at least 10$ million per year, assuming that the average lifetime of technological species exceeds a millennium.
MuMiN: A Large-Scale Multilingual Multimodal Fact-Checked Misinformation Social Network Dataset
Misinformation is becoming increasingly prevalent on social media and in news articles. It has become so widespread that we require algorithmic assistance utilising machine learning to detect such content. Training these machine learning models require datasets of sufficient scale, diversity and quality. However, datasets in the field of automatic misinformation detection are predominantly monolingual, include a limited amount of modalities and are not of sufficient scale and quality. Addressing this, we develop a data collection and linking system (MuMiN-trawl), to build a public misinformation graph dataset (MuMiN), containing rich social media data (tweets, replies, users, images, articles, hashtags) spanning 21 million tweets belonging to 26 thousand Twitter threads, each of which have been semantically linked to 13 thousand fact-checked claims across dozens of topics, events and domains, in 41 different languages, spanning more than a decade. The dataset is made available as a heterogeneous graph via a Python package (mumin). We provide baseline results for two node classification tasks related to the veracity of a claim involving social media, and demonstrate that these are challenging tasks, with the highest macro-average F1-score being 62.55% and 61.45% for the two tasks, respectively. The MuMiN ecosystem is available at https://mumin-dataset.github.io/, including the data, documentation, tutorials and leaderboards.
Fighting an Infodemic: COVID-19 Fake News Dataset
Along with COVID-19 pandemic we are also fighting an `infodemic'. Fake news and rumors are rampant on social media. Believing in rumors can cause significant harm. This is further exacerbated at the time of a pandemic. To tackle this, we curate and release a manually annotated dataset of 10,700 social media posts and articles of real and fake news on COVID-19. We benchmark the annotated dataset with four machine learning baselines - Decision Tree, Logistic Regression, Gradient Boost, and Support Vector Machine (SVM). We obtain the best performance of 93.46% F1-score with SVM. The data and code is available at: https://github.com/parthpatwa/covid19-fake-news-dectection
Improving Wikipedia Verifiability with AI
Verifiability is a core content policy of Wikipedia: claims that are likely to be challenged need to be backed by citations. There are millions of articles available online and thousands of new articles are released each month. For this reason, finding relevant sources is a difficult task: many claims do not have any references that support them. Furthermore, even existing citations might not support a given claim or become obsolete once the original source is updated or deleted. Hence, maintaining and improving the quality of Wikipedia references is an important challenge and there is a pressing need for better tools to assist humans in this effort. Here, we show that the process of improving references can be tackled with the help of artificial intelligence (AI). We develop a neural network based system, called Side, to identify Wikipedia citations that are unlikely to support their claims, and subsequently recommend better ones from the web. We train this model on existing Wikipedia references, therefore learning from the contributions and combined wisdom of thousands of Wikipedia editors. Using crowd-sourcing, we observe that for the top 10% most likely citations to be tagged as unverifiable by our system, humans prefer our system's suggested alternatives compared to the originally cited reference 70% of the time. To validate the applicability of our system, we built a demo to engage with the English-speaking Wikipedia community and find that Side's first citation recommendation collects over 60% more preferences than existing Wikipedia citations for the same top 10% most likely unverifiable claims according to Side. Our results indicate that an AI-based system could be used, in tandem with humans, to improve the verifiability of Wikipedia. More generally, we hope that our work can be used to assist fact checking efforts and increase the general trustworthiness of information online.
Uncertain Evidence in Probabilistic Models and Stochastic Simulators
We consider the problem of performing Bayesian inference in probabilistic models where observations are accompanied by uncertainty, referred to as "uncertain evidence." We explore how to interpret uncertain evidence, and by extension the importance of proper interpretation as it pertains to inference about latent variables. We consider a recently-proposed method "distributional evidence" as well as revisit two older methods: Jeffrey's rule and virtual evidence. We devise guidelines on how to account for uncertain evidence and we provide new insights, particularly regarding consistency. To showcase the impact of different interpretations of the same uncertain evidence, we carry out experiments in which one interpretation is defined as "correct." We then compare inference results from each different interpretation illustrating the importance of careful consideration of uncertain evidence.
How does fake news use a thumbnail? CLIP-based Multimodal Detection on the Unrepresentative News Image
This study investigates how fake news uses a thumbnail for a news article with a focus on whether a news article's thumbnail represents the news content correctly. A news article shared with an irrelevant thumbnail can mislead readers into having a wrong impression of the issue, especially in social media environments where users are less likely to click the link and consume the entire content. We propose to capture the degree of semantic incongruity in the multimodal relation by using the pretrained CLIP representation. From a source-level analysis, we found that fake news employs a more incongruous image to the main content than general news. Going further, we attempted to detect news articles with image-text incongruity. Evaluation experiments suggest that CLIP-based methods can successfully detect news articles in which the thumbnail is semantically irrelevant to news text. This study contributes to the research by providing a novel view on tackling online fake news and misinformation. Code and datasets are available at https://github.com/ssu-humane/fake-news-thumbnail.
Interpreting Black Box Models via Hypothesis Testing
In science and medicine, model interpretations may be reported as discoveries of natural phenomena or used to guide patient treatments. In such high-stakes tasks, false discoveries may lead investigators astray. These applications would therefore benefit from control over the finite-sample error rate of interpretations. We reframe black box model interpretability as a multiple hypothesis testing problem. The task is to discover "important" features by testing whether the model prediction is significantly different from what would be expected if the features were replaced with uninformative counterfactuals. We propose two testing methods: one that provably controls the false discovery rate but which is not yet feasible for large-scale applications, and an approximate testing method which can be applied to real-world data sets. In simulation, both tests have high power relative to existing interpretability methods. When applied to state-of-the-art vision and language models, the framework selects features that intuitively explain model predictions. The resulting explanations have the additional advantage that they are themselves easy to interpret.
Protecting Society from AI Misuse: When are Restrictions on Capabilities Warranted?
Artificial intelligence (AI) systems will increasingly be used to cause harm as they grow more capable. In fact, AI systems are already starting to be used to automate fraudulent activities, violate human rights, create harmful fake images, and identify dangerous toxins. To prevent some misuses of AI, we argue that targeted interventions on certain capabilities will be warranted. These restrictions may include controlling who can access certain types of AI models, what they can be used for, whether outputs are filtered or can be traced back to their user, and the resources needed to develop them. We also contend that some restrictions on non-AI capabilities needed to cause harm will be required. Though capability restrictions risk reducing use more than misuse (facing an unfavorable Misuse-Use Tradeoff), we argue that interventions on capabilities are warranted when other interventions are insufficient, the potential harm from misuse is high, and there are targeted ways to intervene on capabilities. We provide a taxonomy of interventions that can reduce AI misuse, focusing on the specific steps required for a misuse to cause harm (the Misuse Chain), and a framework to determine if an intervention is warranted. We apply this reasoning to three examples: predicting novel toxins, creating harmful images, and automating spear phishing campaigns.
Are Language Models More Like Libraries or Like Librarians? Bibliotechnism, the Novel Reference Problem, and the Attitudes of LLMs
Are LLMs cultural technologies like photocopiers or printing presses, which transmit information but cannot create new content? A challenge for this idea, which we call bibliotechnism, is that LLMs often do generate entirely novel text. We begin by defending bibliotechnism against this challenge, showing how novel text may be meaningful only in a derivative sense, so that the content of this generated text depends in an important sense on the content of original human text. We go on to present a different, novel challenge for bibliotechnism, stemming from examples in which LLMs generate "novel reference", using novel names to refer to novel entities. Such examples could be smoothly explained if LLMs were not cultural technologies but possessed a limited form of agency (beliefs, desires, and intentions). According to interpretationism in the philosophy of mind, a system has beliefs, desires and intentions if and only if its behavior is well-explained by the hypothesis that it has such states. In line with this view, we argue that cases of novel reference provide evidence that LLMs do in fact have beliefs, desires, and intentions, and thus have a limited form of agency.
Towards Best Practices for Open Datasets for LLM Training
Many AI companies are training their large language models (LLMs) on data without the permission of the copyright owners. The permissibility of doing so varies by jurisdiction: in countries like the EU and Japan, this is allowed under certain restrictions, while in the United States, the legal landscape is more ambiguous. Regardless of the legal status, concerns from creative producers have led to several high-profile copyright lawsuits, and the threat of litigation is commonly cited as a reason for the recent trend towards minimizing the information shared about training datasets by both corporate and public interest actors. This trend in limiting data information causes harm by hindering transparency, accountability, and innovation in the broader ecosystem by denying researchers, auditors, and impacted individuals access to the information needed to understand AI models. While this could be mitigated by training language models on open access and public domain data, at the time of writing, there are no such models (trained at a meaningful scale) due to the substantial technical and sociological challenges in assembling the necessary corpus. These challenges include incomplete and unreliable metadata, the cost and complexity of digitizing physical records, and the diverse set of legal and technical skills required to ensure relevance and responsibility in a quickly changing landscape. Building towards a future where AI systems can be trained on openly licensed data that is responsibly curated and governed requires collaboration across legal, technical, and policy domains, along with investments in metadata standards, digitization, and fostering a culture of openness.
Analyzing the Influence of Fake News in the 2024 Elections: A Comprehensive Dataset
This work introduces a dataset focused on fake news in US political speeches, specifically examining racial slurs and biases. By scraping and annotating 40,000 news articles, using advanced NLP tools and human verification, we provide a nuanced understanding of misinformation in political discourse. The dataset, designed for machine learning and bias analysis, is a critical resource for researchers, policymakers, and educators. It facilitates the development of strategies against misinformation and enhances media literacy, marking a significant contribution to the study of fake news and political communication. Our dataset, focusing on the analysis of fake news in the context of the 2024 elections, is publicly accessible for community to work on fake news identification. Our dataset, focusing on the analysis of fake news in the context of the 2024 elections, is publicly accessible.
Detecting Inappropriate Messages on Sensitive Topics that Could Harm a Company's Reputation
Not all topics are equally "flammable" in terms of toxicity: a calm discussion of turtles or fishing less often fuels inappropriate toxic dialogues than a discussion of politics or sexual minorities. We define a set of sensitive topics that can yield inappropriate and toxic messages and describe the methodology of collecting and labeling a dataset for appropriateness. While toxicity in user-generated data is well-studied, we aim at defining a more fine-grained notion of inappropriateness. The core of inappropriateness is that it can harm the reputation of a speaker. This is different from toxicity in two respects: (i) inappropriateness is topic-related, and (ii) inappropriate message is not toxic but still unacceptable. We collect and release two datasets for Russian: a topic-labeled dataset and an appropriateness-labeled dataset. We also release pre-trained classification models trained on this data.
Hallucination-Free? Assessing the Reliability of Leading AI Legal Research Tools
Legal practice has witnessed a sharp rise in products incorporating artificial intelligence (AI). Such tools are designed to assist with a wide range of core legal tasks, from search and summarization of caselaw to document drafting. But the large language models used in these tools are prone to "hallucinate," or make up false information, making their use risky in high-stakes domains. Recently, certain legal research providers have touted methods such as retrieval-augmented generation (RAG) as "eliminating" (Casetext, 2023) or "avoid[ing]" hallucinations (Thomson Reuters, 2023), or guaranteeing "hallucination-free" legal citations (LexisNexis, 2023). Because of the closed nature of these systems, systematically assessing these claims is challenging. In this article, we design and report on the first preregistered empirical evaluation of AI-driven legal research tools. We demonstrate that the providers' claims are overstated. While hallucinations are reduced relative to general-purpose chatbots (GPT-4), we find that the AI research tools made by LexisNexis (Lexis+ AI) and Thomson Reuters (Westlaw AI-Assisted Research and Ask Practical Law AI) each hallucinate between 17% and 33% of the time. We also document substantial differences between systems in responsiveness and accuracy. Our article makes four key contributions. It is the first to assess and report the performance of RAG-based proprietary legal AI tools. Second, it introduces a comprehensive, preregistered dataset for identifying and understanding vulnerabilities in these systems. Third, it proposes a clear typology for differentiating between hallucinations and accurate legal responses. Last, it provides evidence to inform the responsibilities of legal professionals in supervising and verifying AI outputs, which remains a central open question for the responsible integration of AI into law.
Textbooks Are All You Need II: phi-1.5 technical report
We continue the investigation into the power of smaller Transformer-based language models as initiated by TinyStories -- a 10 million parameter model that can produce coherent English -- and the follow-up work on phi-1, a 1.3 billion parameter model with Python coding performance close to the state-of-the-art. The latter work proposed to use existing Large Language Models (LLMs) to generate ``textbook quality" data as a way to enhance the learning process compared to traditional web data. We follow the ``Textbooks Are All You Need" approach, focusing this time on common sense reasoning in natural language, and create a new 1.3 billion parameter model named phi-1.5, with performance on natural language tasks comparable to models 5x larger, and surpassing most non-frontier LLMs on more complex reasoning tasks such as grade-school mathematics and basic coding. More generally, phi-1.5 exhibits many of the traits of much larger LLMs, both good -- such as the ability to ``think step by step" or perform some rudimentary in-context learning -- and bad, including hallucinations and the potential for toxic and biased generations -- encouragingly though, we are seeing improvement on that front thanks to the absence of web data. We open-source phi-1.5 to promote further research on these urgent topics.
Handling and Presenting Harmful Text in NLP Research
Text data can pose a risk of harm. However, the risks are not fully understood, and how to handle, present, and discuss harmful text in a safe way remains an unresolved issue in the NLP community. We provide an analytical framework categorising harms on three axes: (1) the harm type (e.g., misinformation, hate speech or racial stereotypes); (2) whether a harm is sought as a feature of the research design if explicitly studying harmful content (e.g., training a hate speech classifier), versus unsought if harmful content is encountered when working on unrelated problems (e.g., language generation or part-of-speech tagging); and (3) who it affects, from people (mis)represented in the data to those handling the data and those publishing on the data. We provide advice for practitioners, with concrete steps for mitigating harm in research and in publication. To assist implementation we introduce HarmCheck -- a documentation standard for handling and presenting harmful text in research.
Proximity Ascertainment Bias in Early Covid Case Locations
A comparison of the distances to the Huanan Seafood Market of early Covid cases with known links to the market versus cases without known links shows results apparently incompatible with a location model lacking proximity ascertainment bias. The sign of the difference instead agrees with a model in which such ascertainment bias is large. In the presence of such bias inferences based on the clustering of case locations become unreliable.
The Dynamics of (Not) Unfollowing Misinformation Spreaders
Many studies explore how people 'come into' misinformation exposure. But much less is known about how people 'come out of' misinformation exposure. Do people organically sever ties to misinformation spreaders? And what predicts doing so? Over six months, we tracked the frequency and predictors of ~1M followers unfollowing ~5K health misinformation spreaders on Twitter. We found that misinformation ties are persistent. Monthly unfollowing rates are just 0.52%. Users are also 31% more likely to unfollow non-misinformation spreaders than they are to unfollow misinformation spreaders. Although generally infrequent, the factors most associated with unfollowing misinformation spreaders are (1) redundancy and (2) ideology. First, users initially following many spreaders, or who follow spreaders that tweet often, are most likely to unfollow later. Second, liberals are more likely to unfollow than conservatives. Overall, we observe strong persistence of misinformation ties. The fact that users rarely unfollow misinformation spreaders suggests a need for external nudges and the importance of preventing exposure from arising in the first place.
LLMs are Vulnerable to Malicious Prompts Disguised as Scientific Language
As large language models (LLMs) have been deployed in various real-world settings, concerns about the harm they may propagate have grown. Various jailbreaking techniques have been developed to expose the vulnerabilities of these models and improve their safety. This work reveals that many state-of-the-art LLMs are vulnerable to malicious requests hidden behind scientific language. Specifically, our experiments with GPT4o, GPT4o-mini, GPT-4, LLama3-405B-Instruct, Llama3-70B-Instruct, Cohere, Gemini models demonstrate that, the models' biases and toxicity substantially increase when prompted with requests that deliberately misinterpret social science and psychological studies as evidence supporting the benefits of stereotypical biases. Alarmingly, these models can also be manipulated to generate fabricated scientific arguments claiming that biases are beneficial, which can be used by ill-intended actors to systematically jailbreak these strong LLMs. Our analysis studies various factors that contribute to the models' vulnerabilities to malicious requests in academic language. Mentioning author names and venues enhances the persuasiveness of models, and the bias scores increase as dialogues progress. Our findings call for a more careful investigation on the use of scientific data for training LLMs.
Med-MMHL: A Multi-Modal Dataset for Detecting Human- and LLM-Generated Misinformation in the Medical Domain
The pervasive influence of misinformation has far-reaching and detrimental effects on both individuals and society. The COVID-19 pandemic has witnessed an alarming surge in the dissemination of medical misinformation. However, existing datasets pertaining to misinformation predominantly focus on textual information, neglecting the inclusion of visual elements, and tend to center solely on COVID-19-related misinformation, overlooking misinformation surrounding other diseases. Furthermore, the potential of Large Language Models (LLMs), such as the ChatGPT developed in late 2022, in generating misinformation has been overlooked in previous works. To overcome these limitations, we present Med-MMHL, a novel multi-modal misinformation detection dataset in a general medical domain encompassing multiple diseases. Med-MMHL not only incorporates human-generated misinformation but also includes misinformation generated by LLMs like ChatGPT. Our dataset aims to facilitate comprehensive research and development of methodologies for detecting misinformation across diverse diseases and various scenarios, including human and LLM-generated misinformation detection at the sentence, document, and multi-modal levels. To access our dataset and code, visit our GitHub repository: https://github.com/styxsys0927/Med-MMHL.
A Reply to Makelov et al. (2023)'s "Interpretability Illusion" Arguments
We respond to the recent paper by Makelov et al. (2023), which reviews subspace interchange intervention methods like distributed alignment search (DAS; Geiger et al. 2023) and claims that these methods potentially cause "interpretability illusions". We first review Makelov et al. (2023)'s technical notion of what an "interpretability illusion" is, and then we show that even intuitive and desirable explanations can qualify as illusions in this sense. As a result, their method of discovering "illusions" can reject explanations they consider "non-illusory". We then argue that the illusions Makelov et al. (2023) see in practice are artifacts of their training and evaluation paradigms. We close by emphasizing that, though we disagree with their core characterization, Makelov et al. (2023)'s examples and discussion have undoubtedly pushed the field of interpretability forward.
Algorithmic Behaviors Across Regions: A Geolocation Audit of YouTube Search for COVID-19 Misinformation between the United States and South Africa
Despite being an integral tool for finding health-related information online, YouTube has faced criticism for disseminating COVID-19 misinformation globally to its users. Yet, prior audit studies have predominantly investigated YouTube within the Global North contexts, often overlooking the Global South. To address this gap, we conducted a comprehensive 10-day geolocation-based audit on YouTube to compare the prevalence of COVID-19 misinformation in search results between the United States (US) and South Africa (SA), the countries heavily affected by the pandemic in the Global North and the Global South, respectively. For each country, we selected 3 geolocations and placed sock-puppets, or bots emulating "real" users, that collected search results for 48 search queries sorted by 4 search filters for 10 days, yielding a dataset of 915K results. We found that 31.55% of the top-10 search results contained COVID-19 misinformation. Among the top-10 search results, bots in SA faced significantly more misinformative search results than their US counterparts. Overall, our study highlights the contrasting algorithmic behaviors of YouTube search between two countries, underscoring the need for the platform to regulate algorithmic behavior consistently across different regions of the Globe.
Early Warning Signals and the Prosecutor's Fallacy
Early warning signals have been proposed to forecast the possibility of a critical transition, such as the eutrophication of a lake, the collapse of a coral reef, or the end of a glacial period. Because such transitions often unfold on temporal and spatial scales that can be difficult to approach by experimental manipulation, research has often relied on historical observations as a source of natural experiments. Here we examine a critical difference between selecting systems for study based on the fact that we have observed a critical transition and those systems for which we wish to forecast the approach of a transition. This difference arises by conditionally selecting systems known to experience a transition of some sort and failing to account for the bias this introduces -- a statistical error often known as the Prosecutor's Fallacy. By analysing simulated systems that have experienced transitions purely by chance, we reveal an elevated rate of false positives in common warning signal statistics. We further demonstrate a model-based approach that is less subject to this bias than these more commonly used summary statistics. We note that experimental studies with replicates avoid this pitfall entirely.
Credit card fraud detection - Classifier selection strategy
Machine learning has opened up new tools for financial fraud detection. Using a sample of annotated transactions, a machine learning classification algorithm learns to detect frauds. With growing credit card transaction volumes and rising fraud percentages there is growing interest in finding appropriate machine learning classifiers for detection. However, fraud data sets are diverse and exhibit inconsistent characteristics. As a result, a model effective on a given data set is not guaranteed to perform on another. Further, the possibility of temporal drift in data patterns and characteristics over time is high. Additionally, fraud data has massive and varying imbalance. In this work, we evaluate sampling methods as a viable pre-processing mechanism to handle imbalance and propose a data-driven classifier selection strategy for characteristic highly imbalanced fraud detection data sets. The model derived based on our selection strategy surpasses peer models, whilst working in more realistic conditions, establishing the effectiveness of the strategy.
Size and Shape Constraints of (486958) Arrokoth from Stellar Occultations
We present the results from four stellar occultations by (486958) Arrokoth, the flyby target of the New Horizons extended mission. Three of the four efforts led to positive detections of the body, and all constrained the presence of rings and other debris, finding none. Twenty-five mobile stations were deployed for 2017 June 3 and augmented by fixed telescopes. There were no positive detections from this effort. The event on 2017 July 10 was observed by SOFIA with one very short chord. Twenty-four deployed stations on 2017 July 17 resulted in five chords that clearly showed a complicated shape consistent with a contact binary with rough dimensions of 20 by 30 km for the overall outline. A visible albedo of 10% was derived from these data. Twenty-two systems were deployed for the fourth event on 2018 Aug 4 and resulted in two chords. The combination of the occultation data and the flyby results provides a significant refinement of the rotation period, now estimated to be 15.9380 pm 0.0005 hours. The occultation data also provided high-precision astrometric constraints on the position of the object that were crucial for supporting the navigation for the New Horizons flyby. This work demonstrates an effective method for obtaining detailed size and shape information and probing for rings and dust on distant Kuiper Belt objects as well as being an important source of positional data that can aid in spacecraft navigation that is particularly useful for small and distant bodies.
Addressing "Documentation Debt" in Machine Learning Research: A Retrospective Datasheet for BookCorpus
Recent literature has underscored the importance of dataset documentation work for machine learning, and part of this work involves addressing "documentation debt" for datasets that have been used widely but documented sparsely. This paper aims to help address documentation debt for BookCorpus, a popular text dataset for training large language models. Notably, researchers have used BookCorpus to train OpenAI's GPT-N models and Google's BERT models, even though little to no documentation exists about the dataset's motivation, composition, collection process, etc. We offer a preliminary datasheet that provides key context and information about BookCorpus, highlighting several notable deficiencies. In particular, we find evidence that (1) BookCorpus likely violates copyright restrictions for many books, (2) BookCorpus contains thousands of duplicated books, and (3) BookCorpus exhibits significant skews in genre representation. We also find hints of other potential deficiencies that call for future research, including problematic content, potential skews in religious representation, and lopsided author contributions. While more work remains, this initial effort to provide a datasheet for BookCorpus adds to growing literature that urges more careful and systematic documentation for machine learning datasets.
Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation
With the advent of large multimodal language models, science is now at a threshold of an AI-based technological transformation. Recently, a plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently. This includes all aspects of the research cycle, especially (1) searching for relevant literature; (2) generating research ideas and conducting experimentation; generating (3) text-based and (4) multimodal content (e.g., scientific figures and diagrams); and (5) AI-based automatic peer review. In this survey, we provide an in-depth overview over these exciting recent developments, which promise to fundamentally alter the scientific research process for good. Our survey covers the five aspects outlined above, indicating relevant datasets, methods and results (including evaluation) as well as limitations and scope for future research. Ethical concerns regarding shortcomings of these tools and potential for misuse (fake science, plagiarism, harms to research integrity) take a particularly prominent place in our discussion. We hope that our survey will not only become a reference guide for newcomers to the field but also a catalyst for new AI-based initiatives in the area of "AI4Science".
LLMJudge: LLMs for Relevance Judgments
The LLMJudge challenge is organized as part of the LLM4Eval workshop at SIGIR 2024. Test collections are essential for evaluating information retrieval (IR) systems. The evaluation and tuning of a search system is largely based on relevance labels, which indicate whether a document is useful for a specific search and user. However, collecting relevance judgments on a large scale is costly and resource-intensive. Consequently, typical experiments rely on third-party labelers who may not always produce accurate annotations. The LLMJudge challenge aims to explore an alternative approach by using LLMs to generate relevance judgments. Recent studies have shown that LLMs can generate reliable relevance judgments for search systems. However, it remains unclear which LLMs can match the accuracy of human labelers, which prompts are most effective, how fine-tuned open-source LLMs compare to closed-source LLMs like GPT-4, whether there are biases in synthetically generated data, and if data leakage affects the quality of generated labels. This challenge will investigate these questions, and the collected data will be released as a package to support automatic relevance judgment research in information retrieval and search.
Chinchilla Scaling: A replication attempt
Hoffmann et al. (2022) propose three methods for estimating a compute-optimal scaling law. We attempt to replicate their third estimation procedure, which involves fitting a parametric loss function to a reconstruction of data from their plots. We find that the reported estimates are inconsistent with their first two estimation methods, fail at fitting the extracted data, and report implausibly narrow confidence intervals--intervals this narrow would require over 600,000 experiments, while they likely only ran fewer than 500. In contrast, our rederivation of the scaling law using the third approach yields results that are compatible with the findings from the first two estimation procedures described by Hoffmann et al.
Two Case Studies of Experience Prototyping Machine Learning Systems in the Wild
Throughout the course of my Ph.D., I have been designing the user experience (UX) of various machine learning (ML) systems. In this workshop, I share two projects as case studies in which people engage with ML in much more complicated and nuanced ways than the technical HCML work might assume. The first case study describes how cardiology teams in three hospitals used a clinical decision-support system that helps them decide whether and when to implant an artificial heart to a heart failure patient. I demonstrate that physicians cannot draw on their decision-making experience by seeing only patient data on paper. They are also confused by some fundamental premises upon which ML operates. For example, physicians asked: Are ML predictions made based on clinicians' best efforts? Is it ethical to make decisions based on previous patients' collective outcomes? In the second case study, my collaborators and I designed an intelligent text editor, with the goal of improving authors' writing experience with NLP (Natural Language Processing) technologies. We prototyped a number of generative functionalities where the system provides phrase-or-sentence-level writing suggestions upon user request. When writing with the prototype, however, authors shared that they need to "see where the sentence is going two paragraphs later" in order to decide whether the suggestion aligns with their writing; Some even considered adopting machine suggestions as plagiarism, therefore "is simply wrong". By sharing these unexpected and intriguing responses from these real-world ML users, I hope to start a discussion about such previously-unknown complexities and nuances of -- as the workshop proposal states -- "putting ML at the service of people in a way that is accessible, useful, and trustworthy to all".
Using clarification questions to improve software developers' Web search
Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals.
Sex Trouble: Common pitfalls in incorporating sex/gender in medical machine learning and how to avoid them
False assumptions about sex and gender are deeply embedded in the medical system, including that they are binary, static, and concordant. Machine learning researchers must understand the nature of these assumptions in order to avoid perpetuating them. In this perspectives piece, we identify three common mistakes that researchers make when dealing with sex/gender data: "sex confusion", the failure to identity what sex in a dataset does or doesn't mean; "sex obsession", the belief that sex, specifically sex assigned at birth, is the relevant variable for most applications; and "sex/gender slippage", the conflation of sex and gender even in contexts where only one or the other is known. We then discuss how these pitfalls show up in machine learning studies based on electronic health record data, which is commonly used for everything from retrospective analysis of patient outcomes to the development of algorithms to predict risk and administer care. Finally, we offer a series of recommendations about how machine learning researchers can produce both research and algorithms that more carefully engage with questions of sex/gender, better serving all patients, including transgender people.
Detecting Pretraining Data from Large Language Models
Although large language models (LLMs) are widely deployed, the data used to train them is rarely disclosed. Given the incredible scale of this data, up to trillions of tokens, it is all but certain that it includes potentially problematic text such as copyrighted materials, personally identifiable information, and test data for widely reported reference benchmarks. However, we currently have no way to know which data of these types is included or in what proportions. In this paper, we study the pretraining data detection problem: given a piece of text and black-box access to an LLM without knowing the pretraining data, can we determine if the model was trained on the provided text? To facilitate this study, we introduce a dynamic benchmark WIKIMIA that uses data created before and after model training to support gold truth detection. We also introduce a new detection method Min-K% Prob based on a simple hypothesis: an unseen example is likely to contain a few outlier words with low probabilities under the LLM, while a seen example is less likely to have words with such low probabilities. Min-K% Prob can be applied without any knowledge about the pretraining corpus or any additional training, departing from previous detection methods that require training a reference model on data that is similar to the pretraining data. Moreover, our experiments demonstrate that Min-K% Prob achieves a 7.4% improvement on WIKIMIA over these previous methods. We apply Min-K% Prob to two real-world scenarios, copyrighted book detection, and contaminated downstream example detection, and find it a consistently effective solution.
ArxEval: Evaluating Retrieval and Generation in Language Models for Scientific Literature
Language Models [LMs] are now playing an increasingly large role in information generation and synthesis; the representation of scientific knowledge in these systems needs to be highly accurate. A prime challenge is hallucination; that is, generating apparently plausible but actually false information, including invented citations and nonexistent research papers. This kind of inaccuracy is dangerous in all the domains that require high levels of factual correctness, such as academia and education. This work presents a pipeline for evaluating the frequency with which language models hallucinate in generating responses in the scientific literature. We propose ArxEval, an evaluation pipeline with two tasks using ArXiv as a repository: Jumbled Titles and Mixed Titles. Our evaluation includes fifteen widely used language models and provides comparative insights into their reliability in handling scientific literature.
Behind the Mask: Demographic bias in name detection for PII masking
Many datasets contain personally identifiable information, or PII, which poses privacy risks to individuals. PII masking is commonly used to redact personal information such as names, addresses, and phone numbers from text data. Most modern PII masking pipelines involve machine learning algorithms. However, these systems may vary in performance, such that individuals from particular demographic groups bear a higher risk for having their personal information exposed. In this paper, we evaluate the performance of three off-the-shelf PII masking systems on name detection and redaction. We generate data using names and templates from the customer service domain. We find that an open-source RoBERTa-based system shows fewer disparities than the commercial models we test. However, all systems demonstrate significant differences in error rate based on demographics. In particular, the highest error rates occurred for names associated with Black and Asian/Pacific Islander individuals.
Beyond Document Page Classification: Design, Datasets, and Challenges
This paper highlights the need to bring document classification benchmarking closer to real-world applications, both in the nature of data tested (X: multi-channel, multi-paged, multi-industry; Y: class distributions and label set variety) and in classification tasks considered (f: multi-page document, page stream, and document bundle classification, ...). We identify the lack of public multi-page document classification datasets, formalize different classification tasks arising in application scenarios, and motivate the value of targeting efficient multi-page document representations. An experimental study on proposed multi-page document classification datasets demonstrates that current benchmarks have become irrelevant and need to be updated to evaluate complete documents, as they naturally occur in practice. This reality check also calls for more mature evaluation methodologies, covering calibration evaluation, inference complexity (time-memory), and a range of realistic distribution shifts (e.g., born-digital vs. scanning noise, shifting page order). Our study ends on a hopeful note by recommending concrete avenues for future improvements.}
HealthFC: A Dataset of Health Claims for Evidence-Based Medical Fact-Checking
Seeking health-related advice on the internet has become a common practice in the digital era. Determining the trustworthiness of medical claims found online and finding appropriate evidence for this information is increasingly challenging. Fact-checking has emerged as an approach to assess the veracity of factual claims using evidence from credible knowledge sources. To help advance the automation of this task, in this paper, we introduce a novel dataset of 750 health-related claims, labeled for veracity by medical experts and backed with evidence from appropriate clinical studies. We provide an analysis of the dataset, highlighting its characteristics and challenges. The dataset can be used for Machine Learning tasks related to automated fact-checking such as evidence retrieval, veracity prediction, and explanation generation. For this purpose, we provide baseline models based on different approaches, examine their performance, and discuss the findings.
NewsEdits 2.0: Learning the Intentions Behind Updating News
As events progress, news articles often update with new information: if we are not cautious, we risk propagating outdated facts. In this work, we hypothesize that linguistic features indicate factual fluidity, and that we can predict which facts in a news article will update using solely the text of a news article (i.e. not external resources like search engines). We test this hypothesis, first, by isolating fact-updates in large news revisions corpora. News articles may update for many reasons (e.g. factual, stylistic, narrative). We introduce the NewsEdits 2.0 taxonomy, an edit-intentions schema that separates fact updates from stylistic and narrative updates in news writing. We annotate over 9,200 pairs of sentence revisions and train high-scoring ensemble models to apply this schema. Then, taking a large dataset of silver-labeled pairs, we show that we can predict when facts will update in older article drafts with high precision. Finally, to demonstrate the usefulness of these findings, we construct a language model question asking (LLM-QA) abstention task. We wish the LLM to abstain from answering questions when information is likely to become outdated. Using our predictions, we show, LLM absention reaches near oracle levels of accuracy.
Estimating global article processing charges paid to six publishers for open access between 2019 and 2023
This study presents estimates of the global expenditure on article processing charges (APCs) paid to six publishers for open access between 2019 and 2023. APCs are fees charged for publishing in some fully open access journals (gold) and in subscription journals to make individual articles open access (hybrid). There is currently no way to systematically track institutional, national or global expenses for open access publishing due to a lack of transparency in APC prices, what articles they are paid for, or who pays them. We therefore curated and used an open dataset of annual APC list prices from Elsevier, Frontiers, MDPI, PLOS, Springer Nature, and Wiley in combination with the number of open access articles from these publishers indexed by OpenAlex to estimate that, globally, a total of \8.349 billion (8.968 billion in 2023 US dollars) were spent on APCs between 2019 and 2023. We estimate that in 2023 MDPI (\681.6 million), Elsevier (582.8 million) and Springer Nature (\546.6) generated the most revenue with APCs. After adjusting for inflation, we also show that annual spending almost tripled from 910.3 million in 2019 to \$2.538 billion in 2023, that hybrid exceed gold fees, and that the median APCs paid are higher than the median listed fees for both gold and hybrid. Our approach addresses major limitations in previous efforts to estimate APCs paid and offers much needed insight into an otherwise opaque aspect of the business of scholarly publishing. We call upon publishers to be more transparent about OA fees.
Trust Issues: Uncertainty Estimation Does Not Enable Reliable OOD Detection On Medical Tabular Data
When deploying machine learning models in high-stakes real-world environments such as health care, it is crucial to accurately assess the uncertainty concerning a model's prediction on abnormal inputs. However, there is a scarcity of literature analyzing this problem on medical data, especially on mixed-type tabular data such as Electronic Health Records. We close this gap by presenting a series of tests including a large variety of contemporary uncertainty estimation techniques, in order to determine whether they are able to identify out-of-distribution (OOD) patients. In contrast to previous work, we design tests on realistic and clinically relevant OOD groups, and run experiments on real-world medical data. We find that almost all techniques fail to achieve convincing results, partly disagreeing with earlier findings.
Automatic Construction of a Korean Toxic Instruction Dataset for Ethical Tuning of Large Language Models
Caution: this paper may include material that could be offensive or distressing. The advent of Large Language Models (LLMs) necessitates the development of training approaches that mitigate the generation of unethical language and aptly manage toxic user queries. Given the challenges related to human labor and the scarcity of data, we present KoTox, comprising 39K unethical instruction-output pairs. This collection of automatically generated toxic instructions refines the training of LLMs and establishes a foundational framework for improving LLMs' ethical awareness and response to various toxic inputs, promoting more secure and responsible interactions in Natural Language Processing (NLP) applications.
Towards Detecting Harmful Agendas in News Articles
Manipulated news online is a growing problem which necessitates the use of automated systems to curtail its spread. We argue that while misinformation and disinformation detection have been studied, there has been a lack of investment in the important open challenge of detecting harmful agendas in news articles; identifying harmful agendas is critical to flag news campaigns with the greatest potential for real world harm. Moreover, due to real concerns around censorship, harmful agenda detectors must be interpretable to be effective. In this work, we propose this new task and release a dataset, NewsAgendas, of annotated news articles for agenda identification. We show how interpretable systems can be effective on this task and demonstrate that they can perform comparably to black-box models.
Yo'LLaVA: Your Personalized Language and Vision Assistant
Large Multimodal Models (LMMs) have shown remarkable capabilities across a variety of tasks (e.g., image captioning, visual question answering). While broad, their knowledge remains generic (e.g., recognizing a dog), and they are unable to handle personalized subjects (e.g., recognizing a user's pet dog). Human reasoning, in contrast, typically operates within the context of specific subjects in our surroundings. For example, one might ask, "What should I buy for my dog's birthday?"; as opposed to a generic inquiry about "What should I buy for a dog's birthday?". Similarly, when looking at a friend's image, the interest lies in seeing their activities (e.g., "my friend is holding a cat"), rather than merely observing generic human actions (e.g., "a man is holding a cat"). In this paper, we introduce the novel task of personalizing LMMs, so that they can have conversations about a specific subject. We propose Yo'LLaVA, which learns to embed a personalized subject into a set of latent tokens given a handful of example images of the subject. Our qualitative and quantitative analyses reveal that Yo'LLaVA can learn the concept more efficiently using fewer tokens and more effectively encode the visual attributes compared to strong prompting baselines (e.g., LLaVA).
Preserving Statistical Validity in Adaptive Data Analysis
A great deal of effort has been devoted to reducing the risk of spurious scientific discoveries, from the use of sophisticated validation techniques, to deep statistical methods for controlling the false discovery rate in multiple hypothesis testing. However, there is a fundamental disconnect between the theoretical results and the practice of data analysis: the theory of statistical inference assumes a fixed collection of hypotheses to be tested, or learning algorithms to be applied, selected non-adaptively before the data are gathered, whereas in practice data is shared and reused with hypotheses and new analyses being generated on the basis of data exploration and the outcomes of previous analyses. In this work we initiate a principled study of how to guarantee the validity of statistical inference in adaptive data analysis. As an instance of this problem, we propose and investigate the question of estimating the expectations of m adaptively chosen functions on an unknown distribution given n random samples. We show that, surprisingly, there is a way to estimate an exponential in n number of expectations accurately even if the functions are chosen adaptively. This gives an exponential improvement over standard empirical estimators that are limited to a linear number of estimates. Our result follows from a general technique that counter-intuitively involves actively perturbing and coordinating the estimates, using techniques developed for privacy preservation. We give additional applications of this technique to our question.
The Tracking Machine Learning challenge : Throughput phase
This paper reports on the second "Throughput" phase of the Tracking Machine Learning (TrackML) challenge on the Codalab platform. As in the first "Accuracy" phase, the participants had to solve a difficult experimental problem linked to tracking accurately the trajectory of particles as e.g. created at the Large Hadron Collider (LHC): given O(10^5) points, the participants had to connect them into O(10^4) individual groups that represent the particle trajectories which are approximated helical. While in the first phase only the accuracy mattered, the goal of this second phase was a compromise between the accuracy and the speed of inference. Both were measured on the Codalab platform where the participants had to upload their software. The best three participants had solutions with good accuracy and speed an order of magnitude faster than the state of the art when the challenge was designed. Although the core algorithms were less diverse than in the first phase, a diversity of techniques have been used and are described in this paper. The performance of the algorithms are analysed in depth and lessons derived.
FACTIFY3M: A Benchmark for Multimodal Fact Verification with Explainability through 5W Question-Answering
Combating disinformation is one of the burning societal crises -- about 67% of the American population believes that disinformation produces a lot of uncertainty, and 10% of them knowingly propagate disinformation. Evidence shows that disinformation can manipulate democratic processes and public opinion, causing disruption in the share market, panic and anxiety in society, and even death during crises. Therefore, disinformation should be identified promptly and, if possible, mitigated. With approximately 3.2 billion images and 720,000 hours of video shared online daily on social media platforms, scalable detection of multimodal disinformation requires efficient fact verification. Despite progress in automatic text-based fact verification (e.g., FEVER, LIAR), the research community lacks substantial effort in multimodal fact verification. To address this gap, we introduce FACTIFY 3M, a dataset of 3 million samples that pushes the boundaries of the domain of fact verification via a multimodal fake news dataset, in addition to offering explainability through the concept of 5W question-answering. Salient features of the dataset include: (i) textual claims, (ii) ChatGPT-generated paraphrased claims, (iii) associated images, (iv) stable diffusion-generated additional images (i.e., visual paraphrases), (v) pixel-level image heatmap to foster image-text explainability of the claim, (vi) 5W QA pairs, and (vii) adversarial fake news stories.
Dynamics of (mis)information flow and engaging power of narratives
The debate around misinformation and its potentially detrimental effects on public opinion is complex and multifaceted, to the extent that even the relevant academic research has not found unanimity on the prevalence and consumption of misinformation compared with mainstream content. The methodological framework presented here emphasises the importance of considering data representative of the complexity of the phenomenon and metrics that control for possible scale effects. By combining statistical, econometric and machine learning models, we shed light on the real impact of misinformation about a subject of general interest and social relevance, such as vaccines, on both the information available to citizens and their news diet. Our results show the prominent role achieved by misinformation sources in the news ecosystem, but also - and above all - the inability of mainstream media to drive the public debate over time on issues that are particularly sensitive and emotional. Taking properly account for the temporal dynamics of public debate seems crucial to prevent the latter from moving into uncontrolled spaces where false narratives are more easily conveyed and entrenched.
Towards an Open Platform for Legal Information
Recent advances in the area of legal information systems have led to a variety of applications that promise support in processing and accessing legal documents. Unfortunately, these applications have various limitations, e.g., regarding scope or extensibility. Furthermore, we do not observe a trend towards open access in digital libraries in the legal domain as we observe in other domains, e.g., economics of computer science. To improve open access in the legal domain, we present our approach for an open source platform to transparently process and access Legal Open Data. This enables the sustainable development of legal applications by offering a single technology stack. Moreover, the approach facilitates the development and deployment of new technologies. As proof of concept, we implemented six technologies and generated metadata for more than 250,000 German laws and court decisions. Thus, we can provide users of our platform not only access to legal documents, but also the contained information.
Text Annotation Handbook: A Practical Guide for Machine Learning Projects
This handbook is a hands-on guide on how to approach text annotation tasks. It provides a gentle introduction to the topic, an overview of theoretical concepts as well as practical advice. The topics covered are mostly technical, but business, ethical and regulatory issues are also touched upon. The focus lies on readability and conciseness rather than completeness and scientific rigor. Experience with annotation and knowledge of machine learning are useful but not required. The document may serve as a primer or reference book for a wide range of professions such as team leaders, project managers, IT architects, software developers and machine learning engineers.
NELA-GT-2022: A Large Multi-Labelled News Dataset for The Study of Misinformation in News Articles
In this paper, we present the fifth installment of the NELA-GT datasets, NELA-GT-2022. The dataset contains 1,778,361 articles from 361 outlets between January 1st, 2022 and December 31st, 2022. Just as in past releases of the dataset, NELA-GT-2022 includes outlet-level veracity labels from Media Bias/Fact Check and tweets embedded in collected news articles. The NELA-GT-2022 dataset can be found at: https://doi.org/10.7910/DVN/AMCV2H
Clickbait Classification and Spoiling Using Natural Language Processing
Clickbait is the practice of engineering titles to incentivize readers to click through to articles. Such titles with sensationalized language reveal as little information as possible. Occasionally, clickbait will be intentionally misleading, so natural language processing (NLP) can scan the article and answer the question posed by the clickbait title, or spoil it. We tackle two tasks: classifying the clickbait into one of 3 types (Task 1), and spoiling the clickbait (Task 2). For Task 1, we propose two binary classifiers to determine the final spoiler type. For Task 2, we experiment with two approaches: using a question-answering model to identify the span of text of the spoiler, and using a large language model (LLM) to generate the spoiler. Because the spoiler is contained in the article, we frame the second task as a question-answering approach for identifying the starting and ending positions of the spoiler. We created models for Task 1 that were better than the baselines proposed by the dataset authors and engineered prompts for Task 2 that did not perform as well as the baselines proposed by the dataset authors due to the evaluation metric performing worse when the output text is from a generative model as opposed to an extractive model.
Hardware and Software Platform Inference
It is now a common business practice to buy access to large language model (LLM) inference rather than self-host, because of significant upfront hardware infrastructure and energy costs. However, as a buyer, there is no mechanism to verify the authenticity of the advertised service including the serving hardware platform, e.g. that it is actually being served using an NVIDIA H100. Furthermore, there are reports suggesting that model providers may deliver models that differ slightly from the advertised ones, often to make them run on less expensive hardware. That way, a client pays premium for a capable model access on more expensive hardware, yet ends up being served by a (potentially less capable) cheaper model on cheaper hardware. In this paper we introduce \textbf{hardware and software platform inference (HSPI)} -- a method for identifying the underlying architecture and software stack of a (black-box) machine learning model solely based on its input-output behavior. Our method leverages the inherent differences of various architectures and compilers to distinguish between different types and software stacks. By analyzing the numerical patterns in the model's outputs, we propose a classification framework capable of accurately identifying the used for model inference as well as the underlying software configuration. Our findings demonstrate the feasibility of inferring type from black-box models. We evaluate HSPI against models served on different real hardware and find that in a white-box setting we can distinguish between different s with between 83.9% and 100% accuracy. Even in a black-box setting we are able to achieve results that are up to three times higher than random guess accuracy.
Information-Guided Identification of Training Data Imprint in (Proprietary) Large Language Models
High-quality training data has proven crucial for developing performant large language models (LLMs). However, commercial LLM providers disclose few, if any, details about the data used for training. This lack of transparency creates multiple challenges: it limits external oversight and inspection of LLMs for issues such as copyright infringement, it undermines the agency of data authors, and it hinders scientific research on critical issues such as data contamination and data selection. How can we recover what training data is known to LLMs? In this work, we demonstrate a new method to identify training data known to proprietary LLMs like GPT-4 without requiring any access to model weights or token probabilities, by using information-guided probes. Our work builds on a key observation: text passages with high surprisal are good search material for memorization probes. By evaluating a model's ability to successfully reconstruct high-surprisal tokens in text, we can identify a surprising number of texts memorized by LLMs.
Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S. News Headlines
There is a broad consensus that news media outlets incorporate ideological biases in their news articles. However, prior studies on measuring the discrepancies among media outlets and further dissecting the origins of thematic differences suffer from small sample sizes and limited scope and granularity. In this study, we use a large dataset of 1.8 million news headlines from major U.S. media outlets spanning from 2014 to 2022 to thoroughly track and dissect the fine-grained thematic discrepancy in U.S. news media. We employ multiple correspondence analysis (MCA) to quantify the fine-grained thematic discrepancy related to four prominent topics - domestic politics, economic issues, social issues, and foreign affairs in order to derive a more holistic analysis. Additionally, we compare the most frequent n-grams in media headlines to provide further qualitative insights into our analysis. Our findings indicate that on domestic politics and social issues, the discrepancy can be attributed to a certain degree of media bias. Meanwhile, the discrepancy in reporting foreign affairs is largely attributed to the diversity in individual journalistic styles. Finally, U.S. media outlets show consistency and high similarity in their coverage of economic issues.
Defending Against Authorship Identification Attacks
Authorship identification has proven unsettlingly effective in inferring the identity of the author of an unsigned document, even when sensitive personal information has been carefully omitted. In the digital era, individuals leave a lasting digital footprint through their written content, whether it is posted on social media, stored on their employer's computers, or located elsewhere. When individuals need to communicate publicly yet wish to remain anonymous, there is little available to protect them from unwanted authorship identification. This unprecedented threat to privacy is evident in scenarios such as whistle-blowing. Proposed defenses against authorship identification attacks primarily aim to obfuscate one's writing style, thereby making it unlinkable to their pre-existing writing, while concurrently preserving the original meaning and grammatical integrity. The presented work offers a comprehensive review of the advancements in this research area spanning over the past two decades and beyond. It emphasizes the methodological frameworks of modification and generation-based strategies devised to evade authorship identification attacks, highlighting joint efforts from the differential privacy community. Limitations of current research are discussed, with a spotlight on open challenges and potential research avenues.
Documenting Geographically and Contextually Diverse Data Sources: The BigScience Catalogue of Language Data and Resources
In recent years, large-scale data collection efforts have prioritized the amount of data collected in order to improve the modeling capabilities of large language models. This prioritization, however, has resulted in concerns with respect to the rights of data subjects represented in data collections, particularly when considering the difficulty in interrogating these collections due to insufficient documentation and tools for analysis. Mindful of these pitfalls, we present our methodology for a documentation-first, human-centered data collection project as part of the BigScience initiative. We identified a geographically diverse set of target language groups (Arabic, Basque, Chinese, Catalan, English, French, Indic languages, Indonesian, Niger-Congo languages, Portuguese, Spanish, and Vietnamese, as well as programming languages) for which to collect metadata on potential data sources. To structure this effort, we developed our online catalogue as a supporting tool for gathering metadata through organized public hackathons. We present our development process; analyses of the resulting resource metadata, including distributions over languages, regions, and resource types; and our lessons learned in this endeavor.
Sampling the News Producers: A Large News and Feature Data Set for the Study of the Complex Media Landscape
The complexity and diversity of today's media landscape provides many challenges for researchers studying news producers. These producers use many different strategies to get their message believed by readers through the writing styles they employ, by repetition across different media sources with or without attribution, as well as other mechanisms that are yet to be studied deeply. To better facilitate systematic studies in this area, we present a large political news data set, containing over 136K news articles, from 92 news sources, collected over 7 months of 2017. These news sources are carefully chosen to include well-established and mainstream sources, maliciously fake sources, satire sources, and hyper-partisan political blogs. In addition to each article we compute 130 content-based and social media engagement features drawn from a wide range of literature on political bias, persuasion, and misinformation. With the release of the data set, we also provide the source code for feature computation. In this paper, we discuss the first release of the data set and demonstrate 4 use cases of the data and features: news characterization, engagement characterization, news attribution and content copying, and discovering news narratives.
MM-Claims: A Dataset for Multimodal Claim Detection in Social Media
In recent years, the problem of misinformation on the web has become widespread across languages, countries, and various social media platforms. Although there has been much work on automated fake news detection, the role of images and their variety are not well explored. In this paper, we investigate the roles of image and text at an earlier stage of the fake news detection pipeline, called claim detection. For this purpose, we introduce a novel dataset, MM-Claims, which consists of tweets and corresponding images over three topics: COVID-19, Climate Change and broadly Technology. The dataset contains roughly 86000 tweets, out of which 3400 are labeled manually by multiple annotators for the training and evaluation of multimodal models. We describe the dataset in detail, evaluate strong unimodal and multimodal baselines, and analyze the potential and drawbacks of current models.
Algorithmic Extremism: Examining YouTube's Rabbit Hole of Radicalization
The role that YouTube and its behind-the-scenes recommendation algorithm plays in encouraging online radicalization has been suggested by both journalists and academics alike. This study directly quantifies these claims by examining the role that YouTube's algorithm plays in suggesting radicalized content. After categorizing nearly 800 political channels, we were able to differentiate between political schemas in order to analyze the algorithm traffic flows out and between each group. After conducting a detailed analysis of recommendations received by each channel type, we refute the popular radicalization claims. To the contrary, these data suggest that YouTube's recommendation algorithm actively discourages viewers from visiting radicalizing or extremist content. Instead, the algorithm is shown to favor mainstream media and cable news content over independent YouTube channels with slant towards left-leaning or politically neutral channels. Our study thus suggests that YouTube's recommendation algorithm fails to promote inflammatory or radicalized content, as previously claimed by several outlets.
MultiFC: A Real-World Multi-Domain Dataset for Evidence-Based Fact Checking of Claims
We contribute the largest publicly available dataset of naturally occurring factual claims for the purpose of automatic claim verification. It is collected from 26 fact checking websites in English, paired with textual sources and rich metadata, and labelled for veracity by human expert journalists. We present an in-depth analysis of the dataset, highlighting characteristics and challenges. Further, we present results for automatic veracity prediction, both with established baselines and with a novel method for joint ranking of evidence pages and predicting veracity that outperforms all baselines. Significant performance increases are achieved by encoding evidence, and by modelling metadata. Our best-performing model achieves a Macro F1 of 49.2%, showing that this is a challenging testbed for claim veracity prediction.
Fine-grained Czech News Article Dataset: An Interdisciplinary Approach to Trustworthiness Analysis
We present the Verifee Dataset: a novel dataset of news articles with fine-grained trustworthiness annotations. We develop a detailed methodology that assesses the texts based on their parameters encompassing editorial transparency, journalist conventions, and objective reporting while penalizing manipulative techniques. We bring aboard a diverse set of researchers from social, media, and computer sciences to overcome barriers and limited framing of this interdisciplinary problem. We collect over 10,000 unique articles from almost 60 Czech online news sources. These are categorized into one of the 4 classes across the credibility spectrum we propose, raging from entirely trustworthy articles all the way to the manipulative ones. We produce detailed statistics and study trends emerging throughout the set. Lastly, we fine-tune multiple popular sequence-to-sequence language models using our dataset on the trustworthiness classification task and report the best testing F-1 score of 0.52. We open-source the dataset, annotation methodology, and annotators' instructions in full length at https://verifee.ai/research to enable easy build-up work. We believe similar methods can help prevent disinformation and educate in the realm of media literacy.
PatentMatch: A Dataset for Matching Patent Claims & Prior Art
Patent examiners need to solve a complex information retrieval task when they assess the novelty and inventive step of claims made in a patent application. Given a claim, they search for prior art, which comprises all relevant publicly available information. This time-consuming task requires a deep understanding of the respective technical domain and the patent-domain-specific language. For these reasons, we address the computer-assisted search for prior art by creating a training dataset for supervised machine learning called PatentMatch. It contains pairs of claims from patent applications and semantically corresponding text passages of different degrees from cited patent documents. Each pair has been labeled by technically-skilled patent examiners from the European Patent Office. Accordingly, the label indicates the degree of semantic correspondence (matching), i.e., whether the text passage is prejudicial to the novelty of the claimed invention or not. Preliminary experiments using a baseline system show that PatentMatch can indeed be used for training a binary text pair classifier on this challenging information retrieval task. The dataset is available online: https://hpi.de/naumann/s/patentmatch.
HRDE: Retrieval-Augmented Large Language Models for Chinese Health Rumor Detection and Explainability
As people increasingly prioritize their health, the speed and breadth of health information dissemination on the internet have also grown. At the same time, the presence of false health information (health rumors) intermingled with genuine content poses a significant potential threat to public health. However, current research on Chinese health rumors still lacks a large-scale, public, and open-source dataset of health rumor information, as well as effective and reliable rumor detection methods. This paper addresses this gap by constructing a dataset containing 1.12 million health-related rumors (HealthRCN) through web scraping of common health-related questions and a series of data processing steps. HealthRCN is the largest known dataset of Chinese health information rumors to date. Based on this dataset, we propose retrieval-augmented large language models for Chinese health rumor detection and explainability (HRDE). This model leverages retrieved relevant information to accurately determine whether the input health information is a rumor and provides explanatory responses, effectively aiding users in verifying the authenticity of health information. In evaluation experiments, we compared multiple models and found that HRDE outperformed them all, including GPT-4-1106-Preview, in rumor detection accuracy and answer quality. HRDE achieved an average accuracy of 91.04% and an F1 score of 91.58%.
Alignment of Language Agents
For artificial intelligence to be beneficial to humans the behaviour of AI agents needs to be aligned with what humans want. In this paper we discuss some behavioural issues for language agents, arising from accidental misspecification by the system designer. We highlight some ways that misspecification can occur and discuss some behavioural issues that could arise from misspecification, including deceptive or manipulative language, and review some approaches for avoiding these issues.
ReCoRD: Bridging the Gap between Human and Machine Commonsense Reading Comprehension
We present a large-scale dataset, ReCoRD, for machine reading comprehension requiring commonsense reasoning. Experiments on this dataset demonstrate that the performance of state-of-the-art MRC systems fall far behind human performance. ReCoRD represents a challenge for future research to bridge the gap between human and machine commonsense reading comprehension. ReCoRD is available at http://nlp.jhu.edu/record.
Evaluating Verifiability in Generative Search Engines
Generative search engines directly generate responses to user queries, along with in-line citations. A prerequisite trait of a trustworthy generative search engine is verifiability, i.e., systems should cite comprehensively (high citation recall; all statements are fully supported by citations) and accurately (high citation precision; every cite supports its associated statement). We conduct human evaluation to audit four popular generative search engines -- Bing Chat, NeevaAI, perplexity.ai, and YouChat -- across a diverse set of queries from a variety of sources (e.g., historical Google user queries, dynamically-collected open-ended questions on Reddit, etc.). We find that responses from existing generative search engines are fluent and appear informative, but frequently contain unsupported statements and inaccurate citations: on average, a mere 51.5% of generated sentences are fully supported by citations and only 74.5% of citations support their associated sentence. We believe that these results are concerningly low for systems that may serve as a primary tool for information-seeking users, especially given their facade of trustworthiness. We hope that our results further motivate the development of trustworthy generative search engines and help researchers and users better understand the shortcomings of existing commercial systems.
The Dataset Nutrition Label (2nd Gen): Leveraging Context to Mitigate Harms in Artificial Intelligence
As the production of and reliance on datasets to produce automated decision-making systems (ADS) increases, so does the need for processes for evaluating and interrogating the underlying data. After launching the Dataset Nutrition Label in 2018, the Data Nutrition Project has made significant updates to the design and purpose of the Label, and is launching an updated Label in late 2020, which is previewed in this paper. The new Label includes context-specific Use Cases &Alerts presented through an updated design and user interface targeted towards the data scientist profile. This paper discusses the harm and bias from underlying training data that the Label is intended to mitigate, the current state of the work including new datasets being labeled, new and existing challenges, and further directions of the work, as well as Figures previewing the new label.
On some elusive aspects of databases hindering AI based discovery: A case study on superconducting materials
It stands to reason that the amount and the quality of big data is of key importance for setting up accurate AI-driven models. Nonetheless, we believe there are still critical roadblocks in the inherent generation of databases, that are often underestimated and poorly discussed in the literature. In our view, such issues can seriously hinder the AI-based discovery process, even when high quality, sufficiently large and highly reputable data sources are available. Here, considering superconducting and thermoelectric materials as two representative case studies, we specifically discuss three aspects, namely intrinsically biased sample selection, possible hidden variables, disparate data age. Importantly, to our knowledge, we suggest and test a first strategy capable of detecting and quantifying the presence of the intrinsic data bias.
Teaching language models to support answers with verified quotes
Recent large language models often answer factual questions correctly. But users can't trust any given claim a model makes without fact-checking, because language models can hallucinate convincing nonsense. In this work we use reinforcement learning from human preferences (RLHP) to train "open-book" QA models that generate answers whilst also citing specific evidence for their claims, which aids in the appraisal of correctness. Supporting evidence is drawn from multiple documents found via a search engine, or from a single user-provided document. Our 280 billion parameter model, GopherCite, is able to produce answers with high quality supporting evidence and abstain from answering when unsure. We measure the performance of GopherCite by conducting human evaluation of answers to questions in a subset of the NaturalQuestions and ELI5 datasets. The model's response is found to be high-quality 80\% of the time on this Natural Questions subset, and 67\% of the time on the ELI5 subset. Abstaining from the third of questions for which it is most unsure improves performance to 90\% and 80\% respectively, approaching human baselines. However, analysis on the adversarial TruthfulQA dataset shows why citation is only one part of an overall strategy for safety and trustworthiness: not all claims supported by evidence are true.
Multimodal datasets: misogyny, pornography, and malignant stereotypes
We have now entered the era of trillion parameter machine learning models trained on billion-sized datasets scraped from the internet. The rise of these gargantuan datasets has given rise to formidable bodies of critical work that has called for caution while generating these large datasets. These address concerns surrounding the dubious curation practices used to generate these datasets, the sordid quality of alt-text data available on the world wide web, the problematic content of the CommonCrawl dataset often used as a source for training large language models, and the entrenched biases in large-scale visio-linguistic models (such as OpenAI's CLIP model) trained on opaque datasets (WebImageText). In the backdrop of these specific calls of caution, we examine the recently released LAION-400M dataset, which is a CLIP-filtered dataset of Image-Alt-text pairs parsed from the Common-Crawl dataset. We found that the dataset contains, troublesome and explicit images and text pairs of rape, pornography, malign stereotypes, racist and ethnic slurs, and other extremely problematic content. We outline numerous implications, concerns and downstream harms regarding the current state of large scale datasets while raising open questions for various stakeholders including the AI community, regulators, policy makers and data subjects.
The Ethics of ChatGPT in Medicine and Healthcare: A Systematic Review on Large Language Models (LLMs)
With the introduction of ChatGPT, Large Language Models (LLMs) have received enormous attention in healthcare. Despite their potential benefits, researchers have underscored various ethical implications. While individual instances have drawn much attention, the debate lacks a systematic overview of practical applications currently researched and ethical issues connected to them. Against this background, this work aims to map the ethical landscape surrounding the current stage of deployment of LLMs in medicine and healthcare. Electronic databases and preprint servers were queried using a comprehensive search strategy. Studies were screened and extracted following a modified rapid review approach. Methodological quality was assessed using a hybrid approach. For 53 records, a meta-aggregative synthesis was performed. Four fields of applications emerged and testify to a vivid exploration phase. Advantages of using LLMs are attributed to their capacity in data analysis, personalized information provisioning, support in decision-making, mitigating information loss and enhancing information accessibility. However, we also identifies recurrent ethical concerns connected to fairness, bias, non-maleficence, transparency, and privacy. A distinctive concern is the tendency to produce harmful misinformation or convincingly but inaccurate content. A recurrent plea for ethical guidance and human oversight is evident. Given the variety of use cases, it is suggested that the ethical guidance debate be reframed to focus on defining what constitutes acceptable human oversight across the spectrum of applications. This involves considering diverse settings, varying potentials for harm, and different acceptable thresholds for performance and certainty in healthcare. In addition, a critical inquiry is necessary to determine the extent to which the current experimental use of LLMs is necessary and justified.
Maximising information from weak lensing galaxy surveys
Weak lensing galaxy surveys are currently undergoing a dramatic revolution as the dawn of the Stage-IV surveys are upon us. Hence, ensuring that our analysis methods are as accurate and precise as the raw data is of upmost importance. This motivated the development of a new implementation of the quadratic maximum likelihood power spectrum estimation technique, the application of the theoretical uncertainties approach to mitigate baryonic feedback biases, and to re-evaluating the criterion from which binary scale cuts are derived when aiming to eliminate baryonic biases. These techniques maximise the available information from weak lensing observations while minimising potential systematic biases, and shows how this PhD thesis contributes to the advancement of weak lensing cosmology.
ViWikiFC: Fact-Checking for Vietnamese Wikipedia-Based Textual Knowledge Source
Fact-checking is essential due to the explosion of misinformation in the media ecosystem. Although false information exists in every language and country, most research to solve the problem mainly concentrated on huge communities like English and Chinese. Low-resource languages like Vietnamese are necessary to explore corpora and models for fact verification. To bridge this gap, we construct ViWikiFC, the first manual annotated open-domain corpus for Vietnamese Wikipedia Fact Checking more than 20K claims generated by converting evidence sentences extracted from Wikipedia articles. We analyze our corpus through many linguistic aspects, from the new dependency rate, the new n-gram rate, and the new word rate. We conducted various experiments for Vietnamese fact-checking, including evidence retrieval and verdict prediction. BM25 and InfoXLM (Large) achieved the best results in two tasks, with BM25 achieving an accuracy of 88.30% for SUPPORTS, 86.93% for REFUTES, and only 56.67% for the NEI label in the evidence retrieval task, InfoXLM (Large) achieved an F1 score of 86.51%. Furthermore, we also conducted a pipeline approach, which only achieved a strict accuracy of 67.00% when using InfoXLM (Large) and BM25. These results demonstrate that our dataset is challenging for the Vietnamese language model in fact-checking tasks.
Should we trust web-scraped data?
The increasing adoption of econometric and machine-learning approaches by empirical researchers has led to a widespread use of one data collection method: web scraping. Web scraping refers to the use of automated computer programs to access websites and download their content. The key argument of this paper is that na\"ive web scraping procedures can lead to sampling bias in the collected data. This article describes three sources of sampling bias in web-scraped data. More specifically, sampling bias emerges from web content being volatile (i.e., being subject to change), personalized (i.e., presented in response to request characteristics), and unindexed (i.e., abundance of a population register). In a series of examples, I illustrate the prevalence and magnitude of sampling bias. To support researchers and reviewers, this paper provides recommendations on anticipating, detecting, and overcoming sampling bias in web-scraped data.
Blind Justice: Fairness with Encrypted Sensitive Attributes
Recent work has explored how to train machine learning models which do not discriminate against any subgroup of the population as determined by sensitive attributes such as gender or race. To avoid disparate treatment, sensitive attributes should not be considered. On the other hand, in order to avoid disparate impact, sensitive attributes must be examined, e.g., in order to learn a fair model, or to check if a given model is fair. We introduce methods from secure multi-party computation which allow us to avoid both. By encrypting sensitive attributes, we show how an outcome-based fair model may be learned, checked, or have its outputs verified and held to account, without users revealing their sensitive attributes.
Technical Report on the CleverHans v2.1.0 Adversarial Examples Library
CleverHans is a software library that provides standardized reference implementations of adversarial example construction techniques and adversarial training. The library may be used to develop more robust machine learning models and to provide standardized benchmarks of models' performance in the adversarial setting. Benchmarks constructed without a standardized implementation of adversarial example construction are not comparable to each other, because a good result may indicate a robust model or it may merely indicate a weak implementation of the adversarial example construction procedure. This technical report is structured as follows. Section 1 provides an overview of adversarial examples in machine learning and of the CleverHans software. Section 2 presents the core functionalities of the library: namely the attacks based on adversarial examples and defenses to improve the robustness of machine learning models to these attacks. Section 3 describes how to report benchmark results using the library. Section 4 describes the versioning system.
CLIMATE-FEVER: A Dataset for Verification of Real-World Climate Claims
We introduce CLIMATE-FEVER, a new publicly available dataset for verification of climate change-related claims. By providing a dataset for the research community, we aim to facilitate and encourage work on improving algorithms for retrieving evidential support for climate-specific claims, addressing the underlying language understanding challenges, and ultimately help alleviate the impact of misinformation on climate change. We adapt the methodology of FEVER [1], the largest dataset of artificially designed claims, to real-life claims collected from the Internet. While during this process, we could rely on the expertise of renowned climate scientists, it turned out to be no easy task. We discuss the surprising, subtle complexity of modeling real-world climate-related claims within the fever framework, which we believe provides a valuable challenge for general natural language understanding. We hope that our work will mark the beginning of a new exciting long-term joint effort by the climate science and AI community.
Mitigating the quantum hype
We are in the midst of quantum hype with some excessive claims of quantum computing potential, many vendors' and even some research organizations' exaggerations, and a funding frenzy for very low technology readiness level startups. Governments are contributing to this hype with their large quantum initiatives and their technology sovereignty aspirations. Technology hypes are not bad per se since they create emulation, drive innovations and also contribute to attracting new talents. It works as scientists and vendors deliver progress and innovation on a continuous basis after a so-called peak of expectations. It fails with exaggerated overpromises and underdeliveries that last too long. It could cut short research and innovation funding, creating some sort of quantum winter. After looking at the shape and form of technology and science hypes and driving some lessons from past hypes, we investigate the current quantum hype and its specifics. We find that, although there is some significant uncertainty on the potential to create real scalable quantum computers, the scientific and vendor fields are relatively sane and solid compared to other technology hypes. The vendors hype has some profound and disruptive impact on the organization of fundamental research. Also, quantum technologies comprise other fields like quantum telecommunications and quantum sensing with a higher technology readiness level, which are less prone to hype. We then make some proposals to mitigate the potential negative effects of the current quantum hype including recommendations on scientific communication to strengthen the trust in quantum science, vendor behavior improvements, benchmarking methodologies, public education and putting in place a responsible research and innovation approach.
Text vectorization via transformer-based language models and n-gram perplexities
As the probability (and thus perplexity) of a text is calculated based on the product of the probabilities of individual tokens, it may happen that one unlikely token significantly reduces the probability (i.e., increase the perplexity) of some otherwise highly probable input, while potentially representing a simple typographical error. Also, given that perplexity is a scalar value that refers to the entire input, information about the probability distribution within it is lost in the calculation (a relatively good text that has one unlikely token and another text in which each token is equally likely they can have the same perplexity value), especially for longer texts. As an alternative to scalar perplexity this research proposes a simple algorithm used to calculate vector values based on n-gram perplexities within the input. Such representations consider the previously mentioned aspects, and instead of a unique value, the relative perplexity of each text token is calculated, and these values are combined into a single vector representing the input.
Rethinking E-Commerce Search
E-commerce search and recommendation usually operate on structured data such as product catalogs and taxonomies. However, creating better search and recommendation systems often requires a large variety of unstructured data including customer reviews and articles on the web. Traditionally, the solution has always been converting unstructured data into structured data through information extraction, and conducting search over the structured data. However, this is a costly approach that often has low quality. In this paper, we envision a solution that does entirely the opposite. Instead of converting unstructured data (web pages, customer reviews, etc) to structured data, we instead convert structured data (product inventory, catalogs, taxonomies, etc) into textual data, which can be easily integrated into the text corpus that trains LLMs. Then, search and recommendation can be performed through a Q/A mechanism through an LLM instead of using traditional information retrieval methods over structured data.
Beyond the Selected Completely At Random Assumption for Learning from Positive and Unlabeled Data
Most positive and unlabeled data is subject to selection biases. The labeled examples can, for example, be selected from the positive set because they are easier to obtain or more obviously positive. This paper investigates how learning can be ena BHbled in this setting. We propose and theoretically analyze an empirical-risk-based method for incorporating the labeling mechanism. Additionally, we investigate under which assumptions learning is possible when the labeling mechanism is not fully understood and propose a practical method to enable this. Our empirical analysis supports the theoretical results and shows that taking into account the possibility of a selection bias, even when the labeling mechanism is unknown, improves the trained classifiers.
What's in a Name? Auditing Large Language Models for Race and Gender Bias
We employ an audit design to investigate biases in state-of-the-art large language models, including GPT-4. In our study, we prompt the models for advice involving a named individual across a variety of scenarios, such as during car purchase negotiations or election outcome predictions. We find that the advice systematically disadvantages names that are commonly associated with racial minorities and women. Names associated with Black women receive the least advantageous outcomes. The biases are consistent across 42 prompt templates and several models, indicating a systemic issue rather than isolated incidents. While providing numerical, decision-relevant anchors in the prompt can successfully counteract the biases, qualitative details have inconsistent effects and may even increase disparities. Our findings underscore the importance of conducting audits at the point of LLM deployment and implementation to mitigate their potential for harm against marginalized communities.
CoVERT: A Corpus of Fact-checked Biomedical COVID-19 Tweets
Over the course of the COVID-19 pandemic, large volumes of biomedical information concerning this new disease have been published on social media. Some of this information can pose a real danger to people's health, particularly when false information is shared, for instance recommendations on how to treat diseases without professional medical advice. Therefore, automatic fact-checking resources and systems developed specifically for the medical domain are crucial. While existing fact-checking resources cover COVID-19-related information in news or quantify the amount of misinformation in tweets, there is no dataset providing fact-checked COVID-19-related Twitter posts with detailed annotations for biomedical entities, relations and relevant evidence. We contribute CoVERT, a fact-checked corpus of tweets with a focus on the domain of biomedicine and COVID-19-related (mis)information. The corpus consists of 300 tweets, each annotated with medical named entities and relations. We employ a novel crowdsourcing methodology to annotate all tweets with fact-checking labels and supporting evidence, which crowdworkers search for online. This methodology results in moderate inter-annotator agreement. Furthermore, we use the retrieved evidence extracts as part of a fact-checking pipeline, finding that the real-world evidence is more useful than the knowledge indirectly available in pretrained language models.
SciClaimHunt: A Large Dataset for Evidence-based Scientific Claim Verification
Verifying scientific claims presents a significantly greater challenge than verifying political or news-related claims. Unlike the relatively broad audience for political claims, the users of scientific claim verification systems can vary widely, ranging from researchers testing specific hypotheses to everyday users seeking information on a medication. Additionally, the evidence for scientific claims is often highly complex, involving technical terminology and intricate domain-specific concepts that require specialized models for accurate verification. Despite considerable interest from the research community, there is a noticeable lack of large-scale scientific claim verification datasets to benchmark and train effective models. To bridge this gap, we introduce two large-scale datasets, SciClaimHunt and SciClaimHunt_Num, derived from scientific research papers. We propose several baseline models tailored for scientific claim verification to assess the effectiveness of these datasets. Additionally, we evaluate models trained on SciClaimHunt and SciClaimHunt_Num against existing scientific claim verification datasets to gauge their quality and reliability. Furthermore, we conduct human evaluations of the claims in proposed datasets and perform error analysis to assess the effectiveness of the proposed baseline models. Our findings indicate that SciClaimHunt and SciClaimHunt_Num serve as highly reliable resources for training models in scientific claim verification.
The perpetual motion machine of AI-generated data and the distraction of ChatGPT-as-scientist
Since ChatGPT works so well, are we on the cusp of solving science with AI? Is not AlphaFold2 suggestive that the potential of LLMs in biology and the sciences more broadly is limitless? Can we use AI itself to bridge the lack of data in the sciences in order to then train an AI? Herein we present a discussion of these topics.
Fate and detectability of rare gas hydride ions in nova ejecta: A case study with nova templates
HeH^+ was the first heteronuclear molecule to form in the metal-free Universe after the Big Bang. The molecule gained significant attention following its first circumstellar detection in the young and dense planetary nebula NGC 7027. We target some hydride ions associated with the noble gases (HeH^+, ArH^+, and NeH^+) to investigate their formation in harsh environments like the nova outburst region. We use a photoionization modeling (based on previously published best-fit physical parameters) of the moderately fast ONe type nova, QU Vulpeculae 1984, and the CO type novae, RS Ophiuchi and V1716 Scorpii. Our steady-state modeling reveals a convincing amount of HeH^+, especially in the dense clump of RS Ophiuchi and V1716 Scorpii. The calculated upper limit on the surface brightness of HeH^+ transitions suggests that the James Webb Space Telescope (JWST) could detect some of them, particularly in sources like RS Ophiuchi and V1716 Scorpii, which have similar physical and chemical conditions and evolution. It must be clearly noted that the sources studied are used as templates, and not as targets for observations. The detection of these lines could be useful for determining the physical conditions in similar types of systems and for validating our predictions based on new electron-impact ro-vibrational collisional data at temperatures of up to 20,000 K.
Evidence-Driven Retrieval Augmented Response Generation for Online Misinformation
The proliferation of online misinformation has posed significant threats to public interest. While numerous online users actively participate in the combat against misinformation, many of such responses can be characterized by the lack of politeness and supporting facts. As a solution, text generation approaches are proposed to automatically produce counter-misinformation responses. Nevertheless, existing methods are often trained end-to-end without leveraging external knowledge, resulting in subpar text quality and excessively repetitive responses. In this paper, we propose retrieval augmented response generation for online misinformation (RARG), which collects supporting evidence from scientific sources and generates counter-misinformation responses based on the evidences. In particular, our RARG consists of two stages: (1) evidence collection, where we design a retrieval pipeline to retrieve and rerank evidence documents using a database comprising over 1M academic articles; (2) response generation, in which we align large language models (LLMs) to generate evidence-based responses via reinforcement learning from human feedback (RLHF). We propose a reward function to maximize the utilization of the retrieved evidence while maintaining the quality of the generated text, which yields polite and factual responses that clearly refutes misinformation. To demonstrate the effectiveness of our method, we study the case of COVID-19 and perform extensive experiments with both in- and cross-domain datasets, where RARG consistently outperforms baselines by generating high-quality counter-misinformation responses.
Tight Rates in Supervised Outlier Transfer Learning
A critical barrier to learning an accurate decision rule for outlier detection is the scarcity of outlier data. As such, practitioners often turn to the use of similar but imperfect outlier data from which they might transfer information to the target outlier detection task. Despite the recent empirical success of transfer learning approaches in outlier detection, a fundamental understanding of when and how knowledge can be transferred from a source to a target outlier detection task remains elusive. In this work, we adopt the traditional framework of Neyman-Pearson classification -- which formalizes supervised outlier detection -- with the added assumption that one has access to some related but imperfect outlier data. Our main results are as follows: We first determine the information-theoretic limits of the problem under a measure of discrepancy that extends some existing notions from traditional balanced classification; interestingly, unlike in balanced classification, seemingly very dissimilar sources can provide much information about a target, thus resulting in fast transfer. We then show that, in principle, these information-theoretic limits are achievable by adaptive procedures, i.e., procedures with no a priori information on the discrepancy between source and target outlier distributions.
Challenges and Complexities in Machine Learning based Credit Card Fraud Detection
Credit cards play an exploding role in modern economies. Its popularity and ubiquity have created a fertile ground for fraud, assisted by the cross boarder reach and instantaneous confirmation. While transactions are growing, the fraud percentages are also on the rise as well as the true cost of a dollar fraud. Volume of transactions, uniqueness of frauds and ingenuity of the fraudster are main challenges in detecting frauds. The advent of machine learning, artificial intelligence and big data has opened up new tools in the fight against frauds. Given past transactions, a machine learning algorithm has the ability to 'learn' infinitely complex characteristics in order to identify frauds in real-time, surpassing the best human investigators. However, the developments in fraud detection algorithms has been challenging and slow due the massively unbalanced nature of fraud data, absence of benchmarks and standard evaluation metrics to identify better performing classifiers, lack of sharing and disclosure of research findings and the difficulties in getting access to confidential transaction data for research. This work investigates the properties of typical massively imbalanced fraud data sets, their availability, suitability for research use while exploring the widely varying nature of fraud distributions. Furthermore, we show how human annotation errors compound with machine classification errors. We also carry out experiments to determine the effect of PCA obfuscation (as a means of disseminating sensitive transaction data for research and machine learning) on algorithmic performance of classifiers and show that while PCA does not significantly degrade performance, care should be taken to use the appropriate principle component size (dimensions) to avoid overfitting.
The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink
Machine Learning (ML) workloads have rapidly grown in importance, but raised concerns about their carbon footprint. Four best practices can reduce ML training energy by up to 100x and CO2 emissions up to 1000x. By following best practices, overall ML energy use (across research, development, and production) held steady at <15% of Google's total energy use for the past three years. If the whole ML field were to adopt best practices, total carbon emissions from training would reduce. Hence, we recommend that ML papers include emissions explicitly to foster competition on more than just model quality. Estimates of emissions in papers that omitted them have been off 100x-100,000x, so publishing emissions has the added benefit of ensuring accurate accounting. Given the importance of climate change, we must get the numbers right to make certain that we work on its biggest challenges.
Not Good Times for Lies: Misinformation Detection on the Russia-Ukraine War, COVID-19, and Refugees
Misinformation spread in online social networks is an urgent-to-solve problem having harmful consequences that threaten human health, public safety, economics, and so on. In this study, we construct a novel dataset, called MiDe-22, having 5,284 English and 5,064 Turkish tweets with their misinformation labels under several recent events, including the Russia-Ukraine war, COVID-19 pandemic, and Refugees. Moreover, we provide the user engagements to the tweets in terms of likes, replies, retweets, and quotes. We present a detailed data analysis with descriptive statistics and temporal analysis, and provide the experimental results of a benchmark evaluation for misinformation detection on our novel dataset.
ABOUT ML: Annotation and Benchmarking on Understanding and Transparency of Machine Learning Lifecycles
We present the "Annotation and Benchmarking on Understanding and Transparency of Machine Learning Lifecycles" (ABOUT ML) project as an initiative to operationalize ML transparency and work towards a standard ML documentation practice. We make the case for the project's relevance and effectiveness in consolidating disparate efforts across a variety of stakeholders, as well as bringing in the perspectives of currently missing voices that will be valuable in shaping future conversations. We describe the details of the initiative and the gaps we hope this project will help address.
The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes
Information Retrieval using dense low-dimensional representations recently became popular and showed out-performance to traditional sparse-representations like BM25. However, no previous work investigated how dense representations perform with large index sizes. We show theoretically and empirically that the performance for dense representations decreases quicker than sparse representations for increasing index sizes. In extreme cases, this can even lead to a tipping point where at a certain index size sparse representations outperform dense representations. We show that this behavior is tightly connected to the number of dimensions of the representations: The lower the dimension, the higher the chance for false positives, i.e. returning irrelevant documents.
The Unbearable Slowness of Being: Why do we live at 10 bits/s?
This article is about the neural conundrum behind the slowness of human behavior. The information throughput of a human being is about 10 bits/s. In comparison, our sensory systems gather data at ~10^9 bits/s. The stark contrast between these numbers remains unexplained and touches on fundamental aspects of brain function: What neural substrate sets this speed limit on the pace of our existence? Why does the brain need billions of neurons to process 10 bits/s? Why can we only think about one thing at a time? The brain seems to operate in two distinct modes: the "outer" brain handles fast high-dimensional sensory and motor signals, whereas the "inner" brain processes the reduced few bits needed to control behavior. Plausible explanations exist for the large neuron numbers in the outer brain, but not for the inner brain, and we propose new research directions to remedy this.
SNIFFER: Multimodal Large Language Model for Explainable Out-of-Context Misinformation Detection
Misinformation is a prevalent societal issue due to its potential high risks. Out-of-context (OOC) misinformation, where authentic images are repurposed with false text, is one of the easiest and most effective ways to mislead audiences. Current methods focus on assessing image-text consistency but lack convincing explanations for their judgments, which is essential for debunking misinformation. While Multimodal Large Language Models (MLLMs) have rich knowledge and innate capability for visual reasoning and explanation generation, they still lack sophistication in understanding and discovering the subtle crossmodal differences. In this paper, we introduce SNIFFER, a novel multimodal large language model specifically engineered for OOC misinformation detection and explanation. SNIFFER employs two-stage instruction tuning on InstructBLIP. The first stage refines the model's concept alignment of generic objects with news-domain entities and the second stage leverages language-only GPT-4 generated OOC-specific instruction data to fine-tune the model's discriminatory powers. Enhanced by external tools and retrieval, SNIFFER not only detects inconsistencies between text and image but also utilizes external knowledge for contextual verification. Our experiments show that SNIFFER surpasses the original MLLM by over 40% and outperforms state-of-the-art methods in detection accuracy. SNIFFER also provides accurate and persuasive explanations as validated by quantitative and human evaluations.
SMOTE: Synthetic Minority Over-sampling Technique
An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of "normal" examples with only a small percentage of "abnormal" or "interesting" examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
Arrows of Time for Large Language Models
We study the probabilistic modeling performed by Autoregressive Large Language Models (LLMs) through the angle of time directionality, addressing a question first raised in (Shannon, 1951). For large enough models, we empirically find a time asymmetry in their ability to learn natural language: a difference in the average log-perplexity when trying to predict the next token versus when trying to predict the previous one. This difference is at the same time subtle and very consistent across various modalities (language, model size, training time, ...). Theoretically, this is surprising: from an information-theoretic point of view, there should be no such difference. We provide a theoretical framework to explain how such an asymmetry can appear from sparsity and computational complexity considerations, and outline a number of perspectives opened by our results.
Factify 2: A Multimodal Fake News and Satire News Dataset
The internet gives the world an open platform to express their views and share their stories. While this is very valuable, it makes fake news one of our society's most pressing problems. Manual fact checking process is time consuming, which makes it challenging to disprove misleading assertions before they cause significant harm. This is he driving interest in automatic fact or claim verification. Some of the existing datasets aim to support development of automating fact-checking techniques, however, most of them are text based. Multi-modal fact verification has received relatively scant attention. In this paper, we provide a multi-modal fact-checking dataset called FACTIFY 2, improving Factify 1 by using new data sources and adding satire articles. Factify 2 has 50,000 new data instances. Similar to FACTIFY 1.0, we have three broad categories - support, no-evidence, and refute, with sub-categories based on the entailment of visual and textual data. We also provide a BERT and Vison Transformer based baseline, which achieves 65% F1 score in the test set. The baseline codes and the dataset will be made available at https://github.com/surya1701/Factify-2.0.
NELA-GT-2020: A Large Multi-Labelled News Dataset for The Study of Misinformation in News Articles
In this paper, we present an updated version of the NELA-GT-2019 dataset, entitled NELA-GT-2020. NELA-GT-2020 contains nearly 1.8M news articles from 519 sources collected between January 1st, 2020 and December 31st, 2020. Just as with NELA-GT-2018 and NELA-GT-2019, these sources come from a wide range of mainstream news sources and alternative news sources. Included in the dataset are source-level ground truth labels from Media Bias/Fact Check (MBFC) covering multiple dimensions of veracity. Additionally, new in the 2020 dataset are the Tweets embedded in the collected news articles, adding an extra layer of information to the data. The NELA-GT-2020 dataset can be found at https://doi.org/10.7910/DVN/CHMUYZ.
Worldwide AI Ethics: a review of 200 guidelines and recommendations for AI governance
In the last decade, several organizations have produced documents intended to standardize, in the normative sense, and promote guidance to our recent and rapid AI development. However, the full spectrum of ideas presented in these documents has not yet been analyzed, except for a few meta-analyses and critical reviews of the field. In this work, we seek to expand on the work done by past researchers and create a tool for better data visualization of the contents and nature of these documents, to understand whether there is consensus or similarity between the principles espoused by various institutions, which may inspire debates on future regulations. We also provide some preliminary thoughts and questions that could guide the continuity of the research through a critical analysis of the results acquired by our methodology into a sample size of 200 documents.
BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions
In this paper we study yes/no questions that are naturally occurring --- meaning that they are generated in unprompted and unconstrained settings. We build a reading comprehension dataset, BoolQ, of such questions, and show that they are unexpectedly challenging. They often query for complex, non-factoid information, and require difficult entailment-like inference to solve. We also explore the effectiveness of a range of transfer learning baselines. We find that transferring from entailment data is more effective than transferring from paraphrase or extractive QA data, and that it, surprisingly, continues to be very beneficial even when starting from massive pre-trained language models such as BERT. Our best method trains BERT on MultiNLI and then re-trains it on our train set. It achieves 80.4% accuracy compared to 90% accuracy of human annotators (and 62% majority-baseline), leaving a significant gap for future work.
Response: Emergent analogical reasoning in large language models
In their recent Nature Human Behaviour paper, "Emergent analogical reasoning in large language models," (Webb, Holyoak, and Lu, 2023) the authors argue that "large language models such as GPT-3 have acquired an emergent ability to find zero-shot solutions to a broad range of analogy problems." In this response, we provide counterexamples of the letter string analogies. In our tests, GPT-3 fails to solve even the easiest variants of the problems presented in the original paper. Zero-shot reasoning is an extraordinary claim that requires extraordinary evidence. We do not see that evidence in our experiments. To strengthen claims of humanlike reasoning such as zero-shot reasoning, it is important that the field develop approaches that rule out data memorization.
On building machine learning pipelines for Android malware detection: a procedural survey of practices, challenges and opportunities
As the smartphone market leader, Android has been a prominent target for malware attacks. The number of malicious applications (apps) identified for it has increased continually over the past decade, creating an immense challenge for all parties involved. For market holders and researchers, in particular, the large number of samples has made manual malware detection unfeasible, leading to an influx of research that investigate Machine Learning (ML) approaches to automate this process. However, while some of the proposed approaches achieve high performance, rapidly evolving Android malware has made them unable to maintain their accuracy over time. This has created a need in the community to conduct further research, and build more flexible ML pipelines. Doing so, however, is currently hindered by a lack of systematic overview of the existing literature, to learn from and improve upon the existing solutions. Existing survey papers often focus only on parts of the ML process (e.g., data collection or model deployment), while omitting other important stages, such as model evaluation and explanation. In this paper, we address this problem with a review of 42 highly-cited papers, spanning a decade of research (from 2011 to 2021). We introduce a novel procedural taxonomy of the published literature, covering how they have used ML algorithms, what features they have engineered, which dimensionality reduction techniques they have employed, what datasets they have employed for training, and what their evaluation and explanation strategies are. Drawing from this taxonomy, we also identify gaps in knowledge and provide ideas for improvement and future work.
Interpretation of Natural Language Rules in Conversational Machine Reading
Most work in machine reading focuses on question answering problems where the answer is directly expressed in the text to read. However, many real-world question answering problems require the reading of text not because it contains the literal answer, but because it contains a recipe to derive an answer together with the reader's background knowledge. One example is the task of interpreting regulations to answer "Can I...?" or "Do I have to...?" questions such as "I am working in Canada. Do I have to carry on paying UK National Insurance?" after reading a UK government website about this topic. This task requires both the interpretation of rules and the application of background knowledge. It is further complicated due to the fact that, in practice, most questions are underspecified, and a human assistant will regularly have to ask clarification questions such as "How long have you been working abroad?" when the answer cannot be directly derived from the question and text. In this paper, we formalise this task and develop a crowd-sourcing strategy to collect 32k task instances based on real-world rules and crowd-generated questions and scenarios. We analyse the challenges of this task and assess its difficulty by evaluating the performance of rule-based and machine-learning baselines. We observe promising results when no background knowledge is necessary, and substantial room for improvement whenever background knowledge is needed.
Addressing contingency in algorithmic (mis)information classification: Toward a responsible machine learning agenda
Machine learning (ML) enabled classification models are becoming increasingly popular for tackling the sheer volume and speed of online misinformation and other content that could be identified as harmful. In building these models, data scientists need to take a stance on the legitimacy, authoritativeness and objectivity of the sources of ``truth" used for model training and testing. This has political, ethical and epistemic implications which are rarely addressed in technical papers. Despite (and due to) their reported high accuracy and performance, ML-driven moderation systems have the potential to shape online public debate and create downstream negative impacts such as undue censorship and the reinforcing of false beliefs. Using collaborative ethnography and theoretical insights from social studies of science and expertise, we offer a critical analysis of the process of building ML models for (mis)information classification: we identify a series of algorithmic contingencies--key moments during model development that could lead to different future outcomes, uncertainty and harmful effects as these tools are deployed by social media platforms. We conclude by offering a tentative path toward reflexive and responsible development of ML tools for moderating misinformation and other harmful content online.
Foundations of Large Language Models
This is a book about large language models. As indicated by the title, it primarily focuses on foundational concepts rather than comprehensive coverage of all cutting-edge technologies. The book is structured into four main chapters, each exploring a key area: pre-training, generative models, prompting techniques, and alignment methods. It is intended for college students, professionals, and practitioners in natural language processing and related fields, and can serve as a reference for anyone interested in large language models.
HARK Side of Deep Learning -- From Grad Student Descent to Automated Machine Learning
Recent advancements in machine learning research, i.e., deep learning, introduced methods that excel conventional algorithms as well as humans in several complex tasks, ranging from detection of objects in images and speech recognition to playing difficult strategic games. However, the current methodology of machine learning research and consequently, implementations of the real-world applications of such algorithms, seems to have a recurring HARKing (Hypothesizing After the Results are Known) issue. In this work, we elaborate on the algorithmic, economic and social reasons and consequences of this phenomenon. We present examples from current common practices of conducting machine learning research (e.g. avoidance of reporting negative results) and failure of generalization ability of the proposed algorithms and datasets in actual real-life usage. Furthermore, a potential future trajectory of machine learning research and development from the perspective of accountable, unbiased, ethical and privacy-aware algorithmic decision making is discussed. We would like to emphasize that with this discussion we neither claim to provide an exhaustive argumentation nor blame any specific institution or individual on the raised issues. This is simply a discussion put forth by us, insiders of the machine learning field, reflecting on us.
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
We consider the two related problems of detecting if an example is misclassified or out-of-distribution. We present a simple baseline that utilizes probabilities from softmax distributions. Correctly classified examples tend to have greater maximum softmax probabilities than erroneously classified and out-of-distribution examples, allowing for their detection. We assess performance by defining several tasks in computer vision, natural language processing, and automatic speech recognition, showing the effectiveness of this baseline across all. We then show the baseline can sometimes be surpassed, demonstrating the room for future research on these underexplored detection tasks.
Enhancing Health Information Retrieval with RAG by Prioritizing Topical Relevance and Factual Accuracy
The exponential surge in online health information, coupled with its increasing use by non-experts, highlights the pressing need for advanced Health Information Retrieval models that consider not only topical relevance but also the factual accuracy of the retrieved information, given the potential risks associated with health misinformation. To this aim, this paper introduces a solution driven by Retrieval-Augmented Generation (RAG), which leverages the capabilities of generative Large Language Models (LLMs) to enhance the retrieval of health-related documents grounded in scientific evidence. In particular, we propose a three-stage model: in the first stage, the user's query is employed to retrieve topically relevant passages with associated references from a knowledge base constituted by scientific literature. In the second stage, these passages, alongside the initial query, are processed by LLMs to generate a contextually relevant rich text (GenText). In the last stage, the documents to be retrieved are evaluated and ranked both from the point of view of topical relevance and factual accuracy by means of their comparison with GenText, either through stance detection or semantic similarity. In addition to calculating factual accuracy, GenText can offer a layer of explainability for it, aiding users in understanding the reasoning behind the retrieval. Experimental evaluation of our model on benchmark datasets and against baseline models demonstrates its effectiveness in enhancing the retrieval of both topically relevant and factually accurate health information, thus presenting a significant step forward in the health misinformation mitigation problem.
Newswire: A Large-Scale Structured Database of a Century of Historical News
In the U.S. historically, local newspapers drew their content largely from newswires like the Associated Press. Historians argue that newswires played a pivotal role in creating a national identity and shared understanding of the world, but there is no comprehensive archive of the content sent over newswires. We reconstruct such an archive by applying a customized deep learning pipeline to hundreds of terabytes of raw image scans from thousands of local newspapers. The resulting dataset contains 2.7 million unique public domain U.S. newswire articles, written between 1878 and 1977. Locations in these articles are georeferenced, topics are tagged using customized neural topic classification, named entities are recognized, and individuals are disambiguated to Wikipedia using a novel entity disambiguation model. To construct the Newswire dataset, we first recognize newspaper layouts and transcribe around 138 millions structured article texts from raw image scans. We then use a customized neural bi-encoder model to de-duplicate reproduced articles, in the presence of considerable abridgement and noise, quantifying how widely each article was reproduced. A text classifier is used to ensure that we only include newswire articles, which historically are in the public domain. The structured data that accompany the texts provide rich information about the who (disambiguated individuals), what (topics), and where (georeferencing) of the news that millions of Americans read over the course of a century. We also include Library of Congress metadata information about the newspapers that ran the articles on their front pages. The Newswire dataset is useful both for large language modeling - expanding training data beyond what is available from modern web texts - and for studying a diversity of questions in computational linguistics, social science, and the digital humanities.
The Surprising Performance of Simple Baselines for Misinformation Detection
As social media becomes increasingly prominent in our day to day lives, it is increasingly important to detect informative content and prevent the spread of disinformation and unverified rumours. While many sophisticated and successful models have been proposed in the literature, they are often compared with older NLP baselines such as SVMs, CNNs, and LSTMs. In this paper, we examine the performance of a broad set of modern transformer-based language models and show that with basic fine-tuning, these models are competitive with and can even significantly outperform recently proposed state-of-the-art methods. We present our framework as a baseline for creating and evaluating new methods for misinformation detection. We further study a comprehensive set of benchmark datasets, and discuss potential data leakage and the need for careful design of the experiments and understanding of datasets to account for confounding variables. As an extreme case example, we show that classifying only based on the first three digits of tweet ids, which contain information on the date, gives state-of-the-art performance on a commonly used benchmark dataset for fake news detection --Twitter16. We provide a simple tool to detect this problem and suggest steps to mitigate it in future datasets.
FACTOID: FACtual enTailment fOr hallucInation Detection
The widespread adoption of Large Language Models (LLMs) has facilitated numerous benefits. However, hallucination is a significant concern. In response, Retrieval Augmented Generation (RAG) has emerged as a highly promising paradigm to improve LLM outputs by grounding them in factual information. RAG relies on textual entailment (TE) or similar methods to check if the text produced by LLMs is supported or contradicted, compared to retrieved documents. This paper argues that conventional TE methods are inadequate for spotting hallucinations in content generated by LLMs. For instance, consider a prompt about the 'USA's stance on the Ukraine war''. The AI-generated text states, ...U.S. President Barack Obama says the U.S. will not put troops in Ukraine...'' However, during the war the U.S. president is Joe Biden which contradicts factual reality. Moreover, current TE systems are unable to accurately annotate the given text and identify the exact portion that is contradicted. To address this, we introduces a new type of TE called ``Factual Entailment (FE).'', aims to detect factual inaccuracies in content generated by LLMs while also highlighting the specific text segment that contradicts reality. We present FACTOID (FACTual enTAILment for hallucInation Detection), a benchmark dataset for FE. We propose a multi-task learning (MTL) framework for FE, incorporating state-of-the-art (SoTA) long text embeddings such as e5-mistral-7b-instruct, along with GPT-3, SpanBERT, and RoFormer. The proposed MTL architecture for FE achieves an avg. 40\% improvement in accuracy on the FACTOID benchmark compared to SoTA TE methods. As FE automatically detects hallucinations, we assessed 15 modern LLMs and ranked them using our proposed Auto Hallucination Vulnerability Index (HVI_auto). This index quantifies and offers a comparative scale to evaluate and rank LLMs according to their hallucinations.
AutoPureData: Automated Filtering of Web Data for LLM Fine-tuning
Up-to-date and reliable Large Language Models (LLMs) are consistently sought after. Typically, LLMs are trained on a fixed dataset and then deployed. However, the training data continually becomes outdated. Enable automatic training of AI using web data involves significant concerns regarding data quality and safety due to bias, spam, and other unsafe or unwanted text. Pure data is essential for producing reliable models. Training a model on impure data may result in undesirable outcomes. This research proposes a system that collects web data and automatically filters out unwanted text with the assistance of existing trusted AI models. In the experiment, a small sample of web data was collected and filtered, demonstrating the system's effectiveness in purifying the data.
An Algorithm for Recommending Groceries Based on an Item Ranking Method
This research proposes a new recommender system algorithm for online grocery shopping. The algorithm is based on the perspective that, since the grocery items are usually bought in bulk, a grocery recommender system should be capable of recommending the items in bulk. The algorithm figures out the possible dishes a user may cook based on the items added to the basket and recommends the ingredients accordingly. Our algorithm does not depend on the user ratings. Customers usually do not have the patience to rate the groceries they purchase. Therefore, algorithms that are not dependent on user ratings need to be designed. Instead of using a brute force search, this algorithm limits the search space to a set of only a few probably food categories. Each food category consists of several food subcategories. For example, "fried rice" and "biryani" are food subcategories that belong to the food category "rice". For each food category, items are ranked according to how well they can differentiate a food subcategory. To each food subcategory in the activated search space, this algorithm attaches a score. The score is calculated based on the rank of the items added to the basket. Once the score exceeds a threshold value, its corresponding subcategory gets activated. The algorithm then uses a basket-to-recipe similarity measure to identify the best recipe matches within the activated subcategories only. This reduces the search space to a great extent. We may argue that this algorithm is similar to the content-based recommender system in some sense, but it does not suffer from the limitations like limited content, over-specialization, or the new user problem.
Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting
We present a large-scale study of gender bias in occupation classification, a task where the use of machine learning may lead to negative outcomes on peoples' lives. We analyze the potential allocation harms that can result from semantic representation bias. To do so, we study the impact on occupation classification of including explicit gender indicators---such as first names and pronouns---in different semantic representations of online biographies. Additionally, we quantify the bias that remains when these indicators are "scrubbed," and describe proxy behavior that occurs in the absence of explicit gender indicators. As we demonstrate, differences in true positive rates between genders are correlated with existing gender imbalances in occupations, which may compound these imbalances.
Data Minimization at Inference Time
In domains with high stakes such as law, recruitment, and healthcare, learning models frequently rely on sensitive user data for inference, necessitating the complete set of features. This not only poses significant privacy risks for individuals but also demands substantial human effort from organizations to verify information accuracy. This paper asks whether it is necessary to use all input features for accurate predictions at inference time. The paper demonstrates that, in a personalized setting, individuals may only need to disclose a small subset of their features without compromising decision-making accuracy. The paper also provides an efficient sequential algorithm to determine the appropriate attributes for each individual to provide. Evaluations across various learning tasks show that individuals can potentially report as little as 10\% of their information while maintaining the same accuracy level as a model that employs the full set of user information.
CiteME: Can Language Models Accurately Cite Scientific Claims?
Thousands of new scientific papers are published each month. Such information overload complicates researcher efforts to stay current with the state-of-the-art as well as to verify and correctly attribute claims. We pose the following research question: Given a text excerpt referencing a paper, could an LM act as a research assistant to correctly identify the referenced paper? We advance efforts to answer this question by building a benchmark that evaluates the abilities of LMs in citation attribution. Our benchmark, CiteME, consists of text excerpts from recent machine learning papers, each referencing a single other paper. CiteME use reveals a large gap between frontier LMs and human performance, with LMs achieving only 4.2-18.5% accuracy and humans 69.7%. We close this gap by introducing CiteAgent, an autonomous system built on the GPT-4o LM that can also search and read papers, which achieves an accuracy of 35.3\% on CiteME. Overall, CiteME serves as a challenging testbed for open-ended claim attribution, driving the research community towards a future where any claim made by an LM can be automatically verified and discarded if found to be incorrect.
Generalizing to the Future: Mitigating Entity Bias in Fake News Detection
The wide dissemination of fake news is increasingly threatening both individuals and society. Fake news detection aims to train a model on the past news and detect fake news of the future. Though great efforts have been made, existing fake news detection methods overlooked the unintended entity bias in the real-world data, which seriously influences models' generalization ability to future data. For example, 97\% of news pieces in 2010-2017 containing the entity `Donald Trump' are real in our data, but the percentage falls down to merely 33\% in 2018. This would lead the model trained on the former set to hardly generalize to the latter, as it tends to predict news pieces about `Donald Trump' as real for lower training loss. In this paper, we propose an entity debiasing framework (ENDEF) which generalizes fake news detection models to the future data by mitigating entity bias from a cause-effect perspective. Based on the causal graph among entities, news contents, and news veracity, we separately model the contribution of each cause (entities and contents) during training. In the inference stage, we remove the direct effect of the entities to mitigate entity bias. Extensive offline experiments on the English and Chinese datasets demonstrate that the proposed framework can largely improve the performance of base fake news detectors, and online tests verify its superiority in practice. To the best of our knowledge, this is the first work to explicitly improve the generalization ability of fake news detection models to the future data. The code has been released at https://github.com/ICTMCG/ENDEF-SIGIR2022.
Unlearnable Examples: Making Personal Data Unexploitable
The volume of "free" data on the internet has been key to the current success of deep learning. However, it also raises privacy concerns about the unauthorized exploitation of personal data for training commercial models. It is thus crucial to develop methods to prevent unauthorized data exploitation. This paper raises the question: can data be made unlearnable for deep learning models? We present a type of error-minimizing noise that can indeed make training examples unlearnable. Error-minimizing noise is intentionally generated to reduce the error of one or more of the training example(s) close to zero, which can trick the model into believing there is "nothing" to learn from these example(s). The noise is restricted to be imperceptible to human eyes, and thus does not affect normal data utility. We empirically verify the effectiveness of error-minimizing noise in both sample-wise and class-wise forms. We also demonstrate its flexibility under extensive experimental settings and practicability in a case study of face recognition. Our work establishes an important first step towards making personal data unexploitable to deep learning models.
ChartCheck: An Evidence-Based Fact-Checking Dataset over Real-World Chart Images
Data visualizations are common in the real-world. We often use them in data sources such as scientific documents, news articles, textbooks, and social media to summarize key information in a visual form. Charts can also mislead its audience by communicating false information or biasing them towards a specific agenda. Verifying claims against charts is not a straightforward process. It requires analyzing both the text and visual components of the chart, considering characteristics such as colors, positions, and orientations. Moreover, to determine if a claim is supported by the chart content often requires different types of reasoning. To address this challenge, we introduce ChartCheck, a novel dataset for fact-checking against chart images. ChartCheck is the first large-scale dataset with 1.7k real-world charts and 10.5k human-written claims and explanations. We evaluated the dataset on state-of-the-art models and achieved an accuracy of 73.9 in the finetuned setting. Additionally, we identified chart characteristics and reasoning types that challenge the models.
Membership Inference Attacks From First Principles
A membership inference attack allows an adversary to query a trained machine learning model to predict whether or not a particular example was contained in the model's training dataset. These attacks are currently evaluated using average-case "accuracy" metrics that fail to characterize whether the attack can confidently identify any members of the training set. We argue that attacks should instead be evaluated by computing their true-positive rate at low (e.g., <0.1%) false-positive rates, and find most prior attacks perform poorly when evaluated in this way. To address this we develop a Likelihood Ratio Attack (LiRA) that carefully combines multiple ideas from the literature. Our attack is 10x more powerful at low false-positive rates, and also strictly dominates prior attacks on existing metrics.
WeaverBird: Empowering Financial Decision-Making with Large Language Model, Knowledge Base, and Search Engine
We present WeaverBird, an intelligent dialogue system designed specifically for the finance domain. Our system harnesses a large language model of GPT architecture that has been tuned using extensive corpora of finance-related text. As a result, our system possesses the capability to understand complex financial queries, such as "How should I manage my investments during inflation?", and provide informed responses. Furthermore, our system incorporates a local knowledge base and a search engine to retrieve relevant information. The final responses are conditioned on the search results and include proper citations to the sources, thus enjoying an enhanced credibility. Through a range of finance-related questions, we have demonstrated the superior performance of our system compared to other models. To experience our system firsthand, users can interact with our live demo at https://weaverbird.ttic.edu, as well as watch our 2-min video illustration at https://www.youtube.com/watch?v=fyV2qQkX6Tc.
Vital Videos: A dataset of face videos with PPG and blood pressure ground truths
We collected a large dataset consisting of nearly 900 unique participants. For every participant we recorded two 30 second uncompressed videos, synchronized PPG waveforms and a single blood pressure measurement. Gender, age and skin color were also registered for every participant. The dataset includes roughly equal numbers of males and females, as well as participants of all ages. While the skin color distribution could have been more balanced, the dataset contains individuals from every skin color. The data was collected in a diverse set of locations to ensure a wide variety of backgrounds and lighting conditions. In an effort to assist in the research and development of remote vital sign measurement we are now opening up access to this dataset.
UPB at SemEval-2020 Task 11: Propaganda Detection with Domain-Specific Trained BERT
Manipulative and misleading news have become a commodity for some online news outlets and these news have gained a significant impact on the global mindset of people. Propaganda is a frequently employed manipulation method having as goal to influence readers by spreading ideas meant to distort or manipulate their opinions. This paper describes our participation in the SemEval-2020, Task 11: Detection of Propaganda Techniques in News Articles competition. Our approach considers specializing a pre-trained BERT model on propagandistic and hyperpartisan news articles, enabling it to create more adequate representations for the two subtasks, namely propaganda Span Identification (SI) and propaganda Technique Classification (TC). Our proposed system achieved a F1-score of 46.060% in subtask SI, ranking 5th in the leaderboard from 36 teams and a micro-averaged F1 score of 54.302% for subtask TC, ranking 19th from 32 teams.
SubjECTive-QA: Measuring Subjectivity in Earnings Call Transcripts' QA Through Six-Dimensional Feature Analysis
Fact-checking is extensively studied in the context of misinformation and disinformation, addressing objective inaccuracies. However, a softer form of misinformation involves responses that are factually correct but lack certain features such as clarity and relevance. This challenge is prevalent in formal Question-Answer (QA) settings such as press conferences in finance, politics, sports, and other domains, where subjective answers can obscure transparency. Despite this, there is a lack of manually annotated datasets for subjective features across multiple dimensions. To address this gap, we introduce SubjECTive-QA, a human annotated dataset on Earnings Call Transcripts' (ECTs) QA sessions as the answers given by company representatives are often open to subjective interpretations and scrutiny. The dataset includes 49,446 annotations for long-form QA pairs across six features: Assertive, Cautious, Optimistic, Specific, Clear, and Relevant. These features are carefully selected to encompass the key attributes that reflect the tone of the answers provided during QA sessions across different domain. Our findings are that the best-performing Pre-trained Language Model (PLM), RoBERTa-base, has similar weighted F1 scores to Llama-3-70b-Chat on features with lower subjectivity, such as Relevant and Clear, with a mean difference of 2.17% in their weighted F1 scores. The models perform significantly better on features with higher subjectivity, such as Specific and Assertive, with a mean difference of 10.01% in their weighted F1 scores. Furthermore, testing SubjECTive-QA's generalizability using QAs from White House Press Briefings and Gaggles yields an average weighted F1 score of 65.97% using our best models for each feature, demonstrating broader applicability beyond the financial domain. SubjECTive-QA is publicly available under the CC BY 4.0 license
Data-Driven and Deep Learning Methodology for Deceptive Advertising and Phone Scams Detection
The advance of smartphones and cellular networks boosts the need of mobile advertising and targeted marketing. However, it also triggers the unseen security threats. We found that the phone scams with fake calling numbers of very short lifetime are increasingly popular and have been used to trick the users. The harm is worldwide. On the other hand, deceptive advertising (deceptive ads), the fake ads that tricks users to install unnecessary apps via either alluring or daunting texts and pictures, is an emerging threat that seriously harms the reputation of the advertiser. To counter against these two new threats, the conventional blacklist (or whitelist) approach and the machine learning approach with predefined features have been proven useless. Nevertheless, due to the success of deep learning in developing the highly intelligent program, our system can efficiently and effectively detect phone scams and deceptive ads by taking advantage of our unified framework on deep neural network (DNN) and convolutional neural network (CNN). The proposed system has been deployed for operational use and the experimental results proved the effectiveness of our proposed system. Furthermore, we keep our research results and release experiment material on http://DeceptiveAds.TWMAN.ORG and http://PhoneScams.TWMAN.ORG if there is any update.
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
In this paper, we study how well humans can detect text generated by commercial LLMs (GPT-4o, Claude, o1). We hire annotators to read 300 non-fiction English articles, label them as either human-written or AI-generated, and provide paragraph-length explanations for their decisions. Our experiments show that annotators who frequently use LLMs for writing tasks excel at detecting AI-generated text, even without any specialized training or feedback. In fact, the majority vote among five such "expert" annotators misclassifies only 1 of 300 articles, significantly outperforming most commercial and open-source detectors we evaluated even in the presence of evasion tactics like paraphrasing and humanization. Qualitative analysis of the experts' free-form explanations shows that while they rely heavily on specific lexical clues ('AI vocabulary'), they also pick up on more complex phenomena within the text (e.g., formality, originality, clarity) that are challenging to assess for automatic detectors. We release our annotated dataset and code to spur future research into both human and automated detection of AI-generated text.
BanMANI: A Dataset to Identify Manipulated Social Media News in Bangla
Initial work has been done to address fake news detection and misrepresentation of news in the Bengali language. However, no work in Bengali yet addresses the identification of specific claims in social media news that falsely manipulates a related news article. At this point, this problem has been tackled in English and a few other languages, but not in the Bengali language. In this paper, we curate a dataset of social media content labeled with information manipulation relative to reference articles, called BanMANI. The dataset collection method we describe works around the limitations of the available NLP tools in Bangla. We expect these techniques will carry over to building similar datasets in other low-resource languages. BanMANI forms the basis both for evaluating the capabilities of existing NLP systems and for training or fine-tuning new models specifically on this task. In our analysis, we find that this task challenges current LLMs both under zero-shot and fine-tuned settings.
Evidence Inference 2.0: More Data, Better Models
How do we most effectively treat a disease or condition? Ideally, we could consult a database of evidence gleaned from clinical trials to answer such questions. Unfortunately, no such database exists; clinical trial results are instead disseminated primarily via lengthy natural language articles. Perusing all such articles would be prohibitively time-consuming for healthcare practitioners; they instead tend to depend on manually compiled systematic reviews of medical literature to inform care. NLP may speed this process up, and eventually facilitate immediate consult of published evidence. The Evidence Inference dataset was recently released to facilitate research toward this end. This task entails inferring the comparative performance of two treatments, with respect to a given outcome, from a particular article (describing a clinical trial) and identifying supporting evidence. For instance: Does this article report that chemotherapy performed better than surgery for five-year survival rates of operable cancers? In this paper, we collect additional annotations to expand the Evidence Inference dataset by 25\%, provide stronger baseline models, systematically inspect the errors that these make, and probe dataset quality. We also release an abstract only (as opposed to full-texts) version of the task for rapid model prototyping. The updated corpus, documentation, and code for new baselines and evaluations are available at http://evidence-inference.ebm-nlp.com/.
Current Challenges and Visions in Music Recommender Systems Research
Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field.
More efficient manual review of automatically transcribed tabular data
Machine learning methods have proven useful in transcribing historical data. However, results from even highly accurate methods require manual verification and correction. Such manual review can be time-consuming and expensive, therefore the objective of this paper was to make it more efficient. Previously, we used machine learning to transcribe 2.3 million handwritten occupation codes from the Norwegian 1950 census with high accuracy (97%). We manually reviewed the 90,000 (3%) codes with the lowest model confidence. We allocated those 90,000 codes to human reviewers, who used our annotation tool to review the codes. To assess reviewer agreement, some codes were assigned to multiple reviewers. We then analyzed the review results to understand the relationship between accuracy improvements and effort. Additionally, we interviewed the reviewers to improve the workflow. The reviewers corrected 62.8% of the labels and agreed with the model label in 31.9% of cases. About 0.2% of the images could not be assigned a label, while for 5.1% the reviewers were uncertain, or they assigned an invalid label. 9,000 images were independently reviewed by multiple reviewers, resulting in an agreement of 86.43% and disagreement of 8.96%. We learned that our automatic transcription is biased towards the most frequent codes, with a higher degree of misclassification for the lowest frequency codes. Our interview findings show that the reviewers did internal quality control and found our custom tool well-suited. So, only one reviewer is needed, but they should report uncertainty.
POLygraph: Polish Fake News Dataset
This paper presents the POLygraph dataset, a unique resource for fake news detection in Polish. The dataset, created by an interdisciplinary team, is composed of two parts: the "fake-or-not" dataset with 11,360 pairs of news articles (identified by their URLs) and corresponding labels, and the "fake-they-say" dataset with 5,082 news articles (identified by their URLs) and tweets commenting on them. Unlike existing datasets, POLygraph encompasses a variety of approaches from source literature, providing a comprehensive resource for fake news detection. The data was collected through manual annotation by expert and non-expert annotators. The project also developed a software tool that uses advanced machine learning techniques to analyze the data and determine content authenticity. The tool and dataset are expected to benefit various entities, from public sector institutions to publishers and fact-checking organizations. Further dataset exploration will foster fake news detection and potentially stimulate the implementation of similar models in other languages. The paper focuses on the creation and composition of the dataset, so it does not include a detailed evaluation of the software tool for content authenticity analysis, which is planned at a later stage of the project.
Concept Arithmetics for Circumventing Concept Inhibition in Diffusion Models
Motivated by ethical and legal concerns, the scientific community is actively developing methods to limit the misuse of Text-to-Image diffusion models for reproducing copyrighted, violent, explicit, or personal information in the generated images. Simultaneously, researchers put these newly developed safety measures to the test by assuming the role of an adversary to find vulnerabilities and backdoors in them. We use compositional property of diffusion models, which allows to leverage multiple prompts in a single image generation. This property allows us to combine other concepts, that should not have been affected by the inhibition, to reconstruct the vector, responsible for target concept generation, even though the direct computation of this vector is no longer accessible. We provide theoretical and empirical evidence why the proposed attacks are possible and discuss the implications of these findings for safe model deployment. We argue that it is essential to consider all possible approaches to image generation with diffusion models that can be employed by an adversary. Our work opens up the discussion about the implications of concept arithmetics and compositional inference for safety mechanisms in diffusion models. Content Advisory: This paper contains discussions and model-generated content that may be considered offensive. Reader discretion is advised. Project page: https://cs-people.bu.edu/vpetsiuk/arc
Inference Scaling scriptsizeFLaws: The Limits of LLM Resampling with Imperfect Verifiers
Recent research has generated hope that inference scaling could allow weaker language models to match or exceed the accuracy of stronger models, such as by repeatedly sampling solutions to a coding problem until it passes unit tests. The central thesis of this paper is that there is no free lunch for inference scaling: indefinite accuracy improvement through resampling can only be realized if the "verifier" (in this case, a set of unit tests) is perfect. When the verifier is imperfect, as it almost always is in domains such as reasoning or coding (for example, unit tests have imperfect coverage), there is a nonzero probability of false positives: incorrect solutions that pass the verifier. Resampling cannot decrease this probability, so it imposes an upper bound to the accuracy of resampling-based inference scaling even with an infinite compute budget. We find that there is a very strong correlation between the model's single-sample accuracy (i.e. accuracy without unit tests) and its false positive rate on coding benchmarks HumanEval and MBPP, whose unit tests have limited coverage. Therefore, no amount of inference scaling of weaker models can enable them to match the single-sample accuracy of a sufficiently strong model (Fig. 1a). When we consider that false positives have a negative utility compared to abstaining from producing a solution, it bends the inference scaling curve further downward. Empirically, we find that the optimal number of samples can be less than 10 under realistic assumptions (Fig. 1b). Finally, we show that beyond accuracy, false positives may have other undesirable qualities, such as poor adherence to coding style conventions.
Pub-Guard-LLM: Detecting Fraudulent Biomedical Articles with Reliable Explanations
A significant and growing number of published scientific articles is found to involve fraudulent practices, posing a serious threat to the credibility and safety of research in fields such as medicine. We propose Pub-Guard-LLM, the first large language model-based system tailored to fraud detection of biomedical scientific articles. We provide three application modes for deploying Pub-Guard-LLM: vanilla reasoning, retrieval-augmented generation, and multi-agent debate. Each mode allows for textual explanations of predictions. To assess the performance of our system, we introduce an open-source benchmark, PubMed Retraction, comprising over 11K real-world biomedical articles, including metadata and retraction labels. We show that, across all modes, Pub-Guard-LLM consistently surpasses the performance of various baselines and provides more reliable explanations, namely explanations which are deemed more relevant and coherent than those generated by the baselines when evaluated by multiple assessment methods. By enhancing both detection performance and explainability in scientific fraud detection, Pub-Guard-LLM contributes to safeguarding research integrity with a novel, effective, open-source tool.
The Carbon Emissions of Writing and Illustrating Are Lower for AI than for Humans
As AI systems proliferate, their greenhouse gas emissions are an increasingly important concern for human societies. We analyze the emissions of several AI systems (ChatGPT, BLOOM, DALL-E2, Midjourney) relative to those of humans completing the same tasks. We find that an AI writing a page of text emits 130 to 1500 times less CO2e than a human doing so. Similarly, an AI creating an image emits 310 to 2900 times less. Emissions analysis do not account for social impacts such as professional displacement, legality, and rebound effects. In addition, AI is not a substitute for all human tasks. Nevertheless, at present, the use of AI holds the potential to carry out several major activities at much lower emission levels than can humans.
Evaluation of GPT-3.5 and GPT-4 for supporting real-world information needs in healthcare delivery
Despite growing interest in using large language models (LLMs) in healthcare, current explorations do not assess the real-world utility and safety of LLMs in clinical settings. Our objective was to determine whether two LLMs can serve information needs submitted by physicians as questions to an informatics consultation service in a safe and concordant manner. Sixty six questions from an informatics consult service were submitted to GPT-3.5 and GPT-4 via simple prompts. 12 physicians assessed the LLM responses' possibility of patient harm and concordance with existing reports from an informatics consultation service. Physician assessments were summarized based on majority vote. For no questions did a majority of physicians deem either LLM response as harmful. For GPT-3.5, responses to 8 questions were concordant with the informatics consult report, 20 discordant, and 9 were unable to be assessed. There were 29 responses with no majority on "Agree", "Disagree", and "Unable to assess". For GPT-4, responses to 13 questions were concordant, 15 discordant, and 3 were unable to be assessed. There were 35 responses with no majority. Responses from both LLMs were largely devoid of overt harm, but less than 20% of the responses agreed with an answer from an informatics consultation service, responses contained hallucinated references, and physicians were divided on what constitutes harm. These results suggest that while general purpose LLMs are able to provide safe and credible responses, they often do not meet the specific information need of a given question. A definitive evaluation of the usefulness of LLMs in healthcare settings will likely require additional research on prompt engineering, calibration, and custom-tailoring of general purpose models.
Data Contamination Report from the 2024 CONDA Shared Task
The 1st Workshop on Data Contamination (CONDA 2024) focuses on all relevant aspects of data contamination in natural language processing, where data contamination is understood as situations where evaluation data is included in pre-training corpora used to train large scale models, compromising evaluation results. The workshop fostered a shared task to collect evidence on data contamination in current available datasets and models. The goal of the shared task and associated database is to assist the community in understanding the extent of the problem and to assist researchers in avoiding reporting evaluation results on known contaminated resources. The shared task provides a structured, centralized public database for the collection of contamination evidence, open to contributions from the community via GitHub pool requests. This first compilation paper is based on 566 reported entries over 91 contaminated sources from a total of 23 contributors. The details of the individual contamination events are available in the platform. The platform continues to be online, open to contributions from the community.