Papers
arxiv:2407.03463

Precision at Scale: Domain-Specific Datasets On-Demand

Published on Jul 3, 2024
Authors:
,
,
,
,

Abstract

In the realm of self-supervised learning (SSL), conventional wisdom has gravitated towards the utility of massive, general domain datasets for pretraining robust backbones. In this paper, we challenge this idea by exploring if it is possible to bridge the scale between general-domain datasets and (traditionally smaller) domain-specific datasets to reduce the current performance gap. More specifically, we propose Precision at Scale (PaS), a novel method for the autonomous creation of domain-specific datasets on-demand. The modularity of the PaS pipeline enables leveraging state-of-the-art foundational and generative models to create a collection of images of any given size belonging to any given domain with minimal human intervention. Extensive analysis in two complex domains, proves the superiority of PaS datasets over existing traditional domain-specific datasets in terms of diversity, scale, and effectiveness in training visual transformers and convolutional neural networks. Most notably, we prove that automatically generated domain-specific datasets lead to better pretraining than large-scale supervised datasets such as ImageNet-1k and ImageNet-21k. Concretely, models trained on domain-specific datasets constructed by PaS pipeline, beat ImageNet-1k pretrained backbones by at least 12% in all the considered domains and classification tasks and lead to better food domain performance than supervised ImageNet-21k pretrain while being 12 times smaller. Code repository: https://github.com/jesusmolrdv/Precision-at-Scale/

Community

Your need to confirm your account before you can post a new comment.

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2407.03463 in a model README.md to link it from this page.

Datasets citing this paper 2

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2407.03463 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.