MTF 2025 VLM Dishcovery Challenge Dataset - Web Split
Overview
This dataset is part of the training data for the CVPR Workshop Metafood 2025 (MTF 2025) Dishcovery VLM Challenge. It consists of image-text pairs where the images are sourced from the web.
The dataset has been carefully curated using the Precision-at-Scale method, ensuring high relevance and quality for domain-specific tasks.
Associated Hugging Face Repository: jesusmolrdv/MTF25-VLM-Challenge-Dataset-Web
How to Use / Download
Since this dataset split contains URLs to images rather than the images themselves, you need to download the images using a tool like img2dataset
.
Install dependencies:
pip install img2dataset datasets pyarrow pandas
Prepare the URL list: First, download the dataset metadata (which contains the URLs and captions) from Hugging Face and save it as a local file (e.g., Parquet format). Run this short Python script:
from datasets import load_dataset import os hf_dataset_name = "jesusmolrdv/MTF25-VLM-Challenge-Dataset-Web" metadata_output_file = "mtf2025_web_metadata.parquet" # Output file for img2dataset print(f"Loading dataset metadata: {hf_dataset_name}") # Ensure you load the correct split, default is often 'train' dataset = load_dataset(hf_dataset_name, split="train") print(f"Saving metadata to {metadata_output_file}...") # Save in Parquet format, which img2dataset can read efficiently dataset.to_parquet(metadata_output_file) print("Metadata file saved successfully.")
This script will create a file named
mtf2025_web_metadata.parquet
in the directory where you run it. This file contains theurl
andcaption
columns needed byimg2dataset
.Download images using
img2dataset
CLI: Now, use theimg2dataset
command in your terminal. Adjust parameters likeoutput_folder
,image_size
, andprocesses_count
as needed.img2dataset \ --url_list mtf2025_web_metadata.parquet \ --input_format "parquet" \ --url_col "url" \ --caption_col "caption" \ --output_format webdataset \ --output_folder ./mtf2025_web_images \ --processes_count 16 \ --thread_count 64 \ --image_size 512 \ --resize_mode keep_ratio \ --enable_wandb False
Note: Downloading large datasets can take significant time and bandwidth. Some URLs might become inactive over time.
Citation
If you use this dataset in your research or challenge participation, please cite the following paper describing the curation method:
@misc{rodríguezdevera2024precisionscaledomainspecificdatasets,
title={Precision at Scale: Domain-Specific Datasets On-Demand},
author={Jesús M Rodríguez-de-Vera and Imanol G Estepa and Ignacio Sarasúa and Bhalaji Nagarajan and Petia Radeva},
year={2024},
eprint={2407.03463},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2407.03463},
}
- Downloads last month
- 47