|
--- |
|
tags: |
|
- autotrain |
|
- text-generation-inference |
|
- text-generation |
|
- peft |
|
library_name: transformers |
|
widget: |
|
- messages: |
|
- role: user |
|
content: What is your favorite condiment? |
|
license: other |
|
datasets: |
|
- timdettmers/openassistant-guanaco |
|
language: |
|
- en |
|
--- |
|
# Model Details |
|
|
|
This model is a finetuned Meta-Llama-3-8b-Instruct model on the openassistant dataset. It was finetuned using PEFT, a library for efficiently adapting pre-trained language models to various downstream applications without fine-tuning all the model’s parameters. |
|
|
|
# Inference with PEFT Models: |
|
|
|
```python |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from peft import PeftModel, PeftConfig |
|
|
|
base_model = "meta-llama/Meta-Llama-3-8B" |
|
adapter_model = "pantelnm/llama3-openassistant" |
|
|
|
prompt = "Write your prompt here!" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(base_model) |
|
model = PeftModel.from_pretrained(model, adapter_model) |
|
tokenizer = AutoTokenizer.from_pretrained(base_model) |
|
|
|
model = model.to("cuda") |
|
model.eval() |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=10) |
|
print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]) |
|
``` |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). |
|
|
|
# General Usage |
|
|
|
```python |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_path = "PATH_TO_THIS_REPO" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
device_map="auto", |
|
torch_dtype='auto' |
|
).eval() |
|
|
|
# Prompt content: "hi" |
|
messages = [ |
|
{"role": "user", "content": "hi"} |
|
] |
|
|
|
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') |
|
output_ids = model.generate(input_ids.to('cuda')) |
|
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) |
|
|
|
# Model response: "Hello! How can I assist you today?" |
|
print(response) |
|
``` |