ppo-LunarLander-v2 / config.json
pabloyesteb's picture
Push del tema 1
08d22e6
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e3c9e7f2440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e3c9e7f24d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e3c9e7f2560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e3c9e7f25f0>", "_build": "<function ActorCriticPolicy._build at 0x7e3c9e7f2680>", "forward": "<function ActorCriticPolicy.forward at 0x7e3c9e7f2710>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e3c9e7f27a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e3c9e7f2830>", "_predict": "<function ActorCriticPolicy._predict at 0x7e3c9e7f28c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e3c9e7f2950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e3c9e7f29e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e3c9e7f2a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e3c9e800700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695576891785416929, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0yZr2PVkS6O6e7OAk2qTN82HS6OM3dtwAAgD8AAIA/zUz6uq7zjLpto1K70flrtkB7DbtqinQ6AACAPwAAgD+m8bW9KXw3un+Xl7vpAI44ZnLpunhW5TgAAAAAAACAP2ZOE7vhJKK60G9qOheJNTVcM5O5FqOGuQAAgD8AAIA/zUZ/vBT0iLqza3i6Xq2rtOFxf7o4AY85AACAPwAAgD9mkD48FIyZunC1g7srMsq1/EVdOkAdmDoAAIA/AACAP03aUr2uoYe6FQn+uq18JrZwLNM6K9kTOgAAgD8AAIA/ZoeLPOEEoboCp2G8OGICtxL3mTqaV2w2AACAPwAAgD+z3PW9e+KWuoJoXLmz0zm1y6k/OqYCgDgAAIA/AACAP5roQb0USI+6boCOOXnWjjSps8Q6eDaluAAAgD8AAIA/M5crPdOtkD51XvG9b7eTvirVLryZaro8AAAAAAAAAABzHuu9rf95P2DpkLxhjp++CQUZvqWcaj0AAAAAAAAAAJMTMz6S+nc/W7wcPh6Oor4rViA+hvUXvQAAAAAAAAAATadAvfpn1D4jy649tLNbvpwZRj2Kbbu8AAAAAAAAAABmhhY9j35AuqKBzDqxHqs1rouWOhOs8bkAAIA/AACAP5p3n7wfVeS5tMXGOpp5GDRktCQ7fb3ruQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRK/ZElVtKMAWyUTegDjAF0lEdAlJY7W3BpH3V9lChoBkdAYPumLtNSImgHTegDaAhHQJSY8++ueSV1fZQoaAZHQGQmP6KtPpJoB03oA2gIR0CUm3Aq/dqMdX2UKGgGR0BlIT6P8yeqaAdN6ANoCEdAlJylBUrCnHV9lChoBkdAZ1jEMspXqGgHTegDaAhHQJSc0PGyX2N1fZQoaAZHQGXXGdqcmShoB03oA2gIR0CUn669CeEqdX2UKGgGR0BnmwJ3PiT/aAdN6ANoCEdAlKRBbfP5YnV9lChoBkdAZsMki2UjcGgHTegDaAhHQJSvuoYNy5t1fZQoaAZHQGBposiB5HFoB03oA2gIR0CUslfR/mT1dX2UKGgGR0BjTwIjW07baAdN6ANoCEdAlMCnQla8pXV9lChoBkdAZ5nV1fVqe2gHTegDaAhHQJTEFpJwsGx1fZQoaAZHQGCvCVKPGQ1oB03oA2gIR0CUzIjjJdSmdX2UKGgGR0BkIiYw7DEWaAdN6ANoCEdAlM6/dIoVmHV9lChoBkdAXjPPa+N96WgHTegDaAhHQJTj10p3HJd1fZQoaAZHQGhjbEHdGiJoB03oA2gIR0CU5ia3qiXZdX2UKGgGR0BmOv8n/kvLaAdN6ANoCEdAlOb36AOJ+HV9lChoBkdAYo4FKTSssGgHTegDaAhHQJT1BYmsvIx1fZQoaAZHQGGJDkU9IPNoB03oA2gIR0CU+I9rXUYsdX2UKGgGR0BhuN/e+Eh8aAdN6ANoCEdAlPrtzjm0V3V9lChoBkdAX31UKiO/+WgHTegDaAhHQJT8KRHPNV11fZQoaAZHQGN0nNPgvUVoB03oA2gIR0CU/FafjCHidX2UKGgGR0BkvSkRBeHBaAdN6ANoCEdAlP8BWHUMHHV9lChoBkdAYwIVj7Q9imgHTegDaAhHQJUDfyauwHJ1fZQoaAZHQFA1nzQNTcZoB0vaaAhHQJUE/zMA3kx1fZQoaAZHQGP6IxpL26FoB03oA2gIR0CVDEK+i8FqdX2UKGgGR0BkDazPa+N+aAdN6ANoCEdAlQ3sLncL0HV9lChoBkdAZIwTOgQHzGgHTegDaAhHQJUX379AHFB1fZQoaAZHQGaNl3yI55toB03oA2gIR0CVGwq59Vm0dX2UKGgGR0Bkfq83++/QaAdN6ANoCEdAlSTsLF4s3HV9lChoBkdAYJ1Q9A5aNmgHTegDaAhHQJUn2hdt2s91fZQoaAZHQGdMyeAd4mloB03oA2gIR0CVQgQE6kqMdX2UKGgGR0Bhpnjfek57aAdN6ANoCEdAlUOp/oaDPHV9lChoBkdAZ9+N3GGVRmgHTegDaAhHQJVEN4IKMNt1fZQoaAZHQGLFU7jkuHxoB03oA2gIR0CVTeAPNFBqdX2UKGgGR0BlDlLJ0W/KaAdN6ANoCEdAlVNSoKlYU3V9lChoBkdAYbUOJcgQpWgHTegDaAhHQJVUmUpuuRt1fZQoaAZHQGJlRvm5lOJoB03oA2gIR0CVVMg7YChfdX2UKGgGR0Bke9kjHGS7aAdN6ANoCEdAlVfFMdtEX3V9lChoBkdAZ2z1HOKO1mgHTegDaAhHQJVcsyfthNN1fZQoaAZHQGQefsNUfgdoB03oA2gIR0CVXkeNDMNddX2UKGgGR0BilZ8KG+K1aAdN6ANoCEdAlWc4FaB7NXV9lChoBkdAZH+UeMhoumgHTegDaAhHQJVpqrCFbml1fZQoaAZHQGbg8580DU5oB03oA2gIR0CVdaQzUI9ldX2UKGgGR0BhCtORDCxeaAdN6ANoCEdAlXiMiGFi8XV9lChoBkdAYQpjGT9sJ2gHTegDaAhHQJV/1SKm8/V1fZQoaAZHQGJEAf2bobJoB03oA2gIR0CVgZlLvkR0dX2UKGgGR0BhKKkqMFUyaAdN6ANoCEdAlYVbftQbdnV9lChoBkdAZXVBZZB9kWgHTegDaAhHQJWW23QUpNN1fZQoaAZHQGbepLmITGpoB03oA2gIR0CVl1Yj0L+hdX2UKGgGR0BmlXl8w5/9aAdN6ANoCEdAlaGfrWy1NXV9lChoBkdAZe9WHUMG5mgHTegDaAhHQJWpHVRUFSt1fZQoaAZHQGjGRAKOT7loB03oA2gIR0CVqujGkvbodX2UKGgGR0BhdFWhh6SlaAdN6ANoCEdAlaswH7gsLHV9lChoBkdAYU2LsKLKm2gHTegDaAhHQJWvaVyFPBV1fZQoaAZHQGNfOZssQNFoB03oA2gIR0CVtLhIOH32dX2UKGgGR0BiP4S6DoQnaAdN6ANoCEdAlbYk3XI2fnV9lChoBkdAZ5pwkPczqWgHTegDaAhHQJW9DeWOZLJ1fZQoaAZHQGdZaQmu1WtoB03oA2gIR0CVvqD0Dlo2dX2UKGgGR0BiVIBkqc3EaAdN6ANoCEdAlcgsdkrf+HV9lChoBkdAaO8igTRIBmgHTegDaAhHQJXLEO3DvVp1fZQoaAZHQF2WHZ9NN8FoB03oA2gIR0CV0kRradtmdX2UKGgGR0Bwny925hBraAdN9QFoCEdAldPAQ176YXV9lChoBkdAY3KWRA8jiWgHTegDaAhHQJXUAcABDG91fZQoaAZHQGR3uGKyfL9oB03oA2gIR0CV143nZCfIdX2UKGgGR0Bgxa/qPfbcaAdN6ANoCEdAldjhxtHhCXV9lChoBkdAYQwcd5prUWgHTegDaAhHQJXZnCiyprF1fZQoaAZHP9mSDAaef7JoB0v2aAhHQJX25h/iHZd1fZQoaAZHQGKlKe9SMtNoB03oA2gIR0CV976NEPUbdX2UKGgGR0BlGDADaGpNaAdN6ANoCEdAlfwCv1UVBXV9lChoBkdAZIv8twrDqGgHTegDaAhHQJX9GWkadc11fZQoaAZHQGUgnVoYekpoB03oA2gIR0CV/UJrtVrAdX2UKGgGR0Bg6imsNlRQaAdN6ANoCEdAlf/BvitJWnV9lChoBkdAZvPjCpFTemgHTegDaAhHQJYFjeEZiux1fZQoaAZHQGTzkLQXyiFoB03oA2gIR0CWDElZowmFdX2UKGgGR0BnI331zySWaAdN6ANoCEdAlg3krGza9XV9lChoBkdANHGcJ+lTFWgHS/FoCEdAlhRTB2wFDHV9lChoBkdAZVFSDRMN+mgHTegDaAhHQJYYEmPYFq11fZQoaAZHQGLSiPhhpg1oB03oA2gIR0CWG/GGVRk3dX2UKGgGR0BxvWUNayKOaAdNFAJoCEdAlh2esgdOqXV9lChoBkdAYGKhEjPfK2gHTegDaAhHQJYln2TPjXF1fZQoaAZHQGYrOSGJvYRoB03oA2gIR0CWKE5RCQcQdX2UKGgGR0Bk2vVVghKUaAdN6ANoCEdAli0yauwHJXV9lChoBkdAaGqTINmUW2gHTegDaAhHQJYuk+IMz/J1fZQoaAZHQGc/r2HtWuJoB03oA2gIR0CWLw+PBBRidX2UKGgGR0BfqS8FpwjuaAdN6ANoCEdAlkaI8EFGG3V9lChoBkdAZ/AOc2BJ7WgHTegDaAhHQJZHiLS/j811fZQoaAZHQCZSqIacZtNoB0viaAhHQJZJfP+n62x1fZQoaAZHQGEq9ETg2qFoB03oA2gIR0CWTUxgiNbUdX2UKGgGR0BnwTdvbXYlaAdN6ANoCEdAlk10zTF2m3V9lChoBkdAYwQVpsXSB2gHTegDaAhHQJZQB5+pfhN1fZQoaAZHQGUHn6VMVUNoB03oA2gIR0CWYLkHUtqYdX2UKGgGR0Bef80tRNypaAdN6ANoCEdAlmMnnIQvpXV9lChoBkdAZu1UkOZssWgHTegDaAhHQJZqtlsguAZ1fZQoaAZHQGQvCk43m3hoB03oA2gIR0CWbZmA9V3mdX2UKGgGR0BeThLkCFK1aAdN6ANoCEdAlnAU7fYSQHV9lChoBkdAYqYee4Cp32gHTegDaAhHQJZxMawUxmF1fZQoaAZHQF72B7NSqERoB03oA2gIR0CWdmrwvxpddX2UKGgGR0Bngw0j1PFeaAdN6ANoCEdAlngY/Z/Tb3V9lChoBkdAZPytWdVebGgHTegDaAhHQJZ9KmQ8wHt1fZQoaAZHQGO9qoZQ53loB03oA2gIR0CWfbF36hxpdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}