pabloyesteb
commited on
Commit
•
08d22e6
1
Parent(s):
97a8314
Push del tema 1
Browse files- README.md +15 -39
- config.json +1 -1
- ppo-sb3-LunarLander-v2.zip +3 -0
- ppo-sb3-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-sb3-LunarLander-v2/data +99 -0
- ppo-sb3-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-sb3-LunarLander-v2/policy.pth +3 -0
- ppo-sb3-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-sb3-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- LunarLander-v2
|
4 |
-
- ppo
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
-
-
|
8 |
-
- deep-rl-course
|
9 |
model-index:
|
10 |
- name: PPO
|
11 |
results:
|
@@ -17,45 +16,22 @@ model-index:
|
|
17 |
type: LunarLander-v2
|
18 |
metrics:
|
19 |
- type: mean_reward
|
20 |
-
value:
|
21 |
name: mean_reward
|
22 |
verified: false
|
23 |
---
|
24 |
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
'wandb_project_name': 'cleanRL'
|
37 |
-
'wandb_entity': None
|
38 |
-
'capture_video': True
|
39 |
-
'env_id': 'LunarLander-v2'
|
40 |
-
'total_timesteps': 50000
|
41 |
-
'learning_rate': 0.00025
|
42 |
-
'num_envs': 4
|
43 |
-
'num_steps': 128
|
44 |
-
'anneal_lr': True
|
45 |
-
'gae': True
|
46 |
-
'gamma': 0.99
|
47 |
-
'gae_lambda': 0.95
|
48 |
-
'num_minibatches': 4
|
49 |
-
'update_epochs': 4
|
50 |
-
'norm_adv': True
|
51 |
-
'clip_coef': 0.2
|
52 |
-
'clip_vloss': True
|
53 |
-
'ent_coef': 0.01
|
54 |
-
'vf_coef': 0.5
|
55 |
-
'max_grad_norm': 0.5
|
56 |
-
'target_kl': None
|
57 |
-
'repo_id': 'pabloyesteb/ppo-LunarLander-v2'
|
58 |
-
'batch_size': 512
|
59 |
-
'minibatch_size': 128}
|
60 |
-
```
|
61 |
-
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
tags:
|
4 |
- LunarLander-v2
|
|
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 270.37 +/- 16.26
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efbbebee310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efbbebee3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efbbebee430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efbbebee4c0>", "_build": "<function ActorCriticPolicy._build at 0x7efbbebee550>", "forward": "<function ActorCriticPolicy.forward at 0x7efbbebee5e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efbbebee670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efbbebee700>", "_predict": "<function ActorCriticPolicy._predict at 0x7efbbebee790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efbbebee820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efbbebee8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efbbebee940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efbbebef3c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680606184147528895, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbIQL1XNxg8Kl5TPstUBr60egk9aIr5uwAAAAAAAAAAa9vBvuhx9j429YY+Cwlwvs0vir1W8hI8AAAAAAAAAAAd4YW+lCkxvdzyxLu7e1u6zlqbPimwHjsAAIA/AACAP6YyZb7TX4k/NkWhvjts6b7zPiu+lM8LPQAAAAAAAAAATSbNvcUMZD61SZM9LFI8vjiXRz3O/Eu9AAAAAAAAAABmBZW8KaBJukJA5Ttu6PCwrvMAuugH27MAAIA/AACAP836Yz5w+SE/HTByvsm2x757lHA9ZJQCvgAAAAAAAAAAABQgvEwXsz8gOfq+V52MvtYeGzz595k9AAAAAAAAAADq2aq+0XTrPntdxj2jr7O+RFQ2visVbT0AAAAAAAAAAJrhZLvX8306vU9Qu5s5hL1gQG48LaJrvgAAAAAAAIA/Zo5mvXuQiLo+xYQ8/UUkPfgcGzv0xQo+AACAPwAAgD8zHmu9w6lhug0sADslapw24X1RO4aQlTUAAIA/AAAAALqWAj5bmqo/poicPqGRv77fJlI+/zcvPgAAAAAAAAAADUGdPXSvqbyyQko9S4pMuwY+Fb6WBCG8AACAPwAAgD/NlsG86tgyPsZ7ab3SBYK+oF7JvQaLcj0AAAAAAAAAAJqhwDzsR9u7lf3NPbFv5zwryCC9qMy/PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbJbLRufXcUCUhpRSlIwBbJRNBgGMAXSUR0CVls92X9iudX2UKGgGaAloD0MIPWGJBxSncUCUhpRSlGgVTTYBaBZHQJWW2curZJ11fZQoaAZoCWgPQwjGwaVjjjNwQJSGlFKUaBVN1QFoFkdAlZeChN/OMXV9lChoBmgJaA9DCNTRcTWy1UxAlIaUUpRoFUviaBZHQJWYXlMh5gR1fZQoaAZoCWgPQwj9n8N8OfBxQJSGlFKUaBVNMAFoFkdAlZh1eruIAXV9lChoBmgJaA9DCN2yQ/zDC3BAlIaUUpRoFU1sAWgWR0CVmKFpwjt5dX2UKGgGaAloD0MIZcVwdYASb0CUhpRSlGgVTSkBaBZHQJWY9ygf2bp1fZQoaAZoCWgPQwhl3xXB/ydtQJSGlFKUaBVNIQFoFkdAlZmDX8O09nV9lChoBmgJaA9DCLvQXKcRr3FAlIaUUpRoFU0ZAWgWR0CVmobR4QjEdX2UKGgGaAloD0MInKIjufwMbkCUhpRSlGgVTVsBaBZHQJWblSl3yI51fZQoaAZoCWgPQwhBSYEFsGhwQJSGlFKUaBVNNwFoFkdAlZwcf7rLQ3V9lChoBmgJaA9DCNxj6UPXQXFAlIaUUpRoFU0gAWgWR0CVnExqO939dX2UKGgGaAloD0MIvvVhvdHVbECUhpRSlGgVTRMBaBZHQJWcWJWNm191fZQoaAZoCWgPQwivIqMDkitwQJSGlFKUaBVNCwFoFkdAlZ2zSkTHsHV9lChoBmgJaA9DCMpskEkGxHJAlIaUUpRoFU0HAWgWR0CVnmDMNc4YdX2UKGgGaAloD0MInN7F+/Fab0CUhpRSlGgVTQsBaBZHQJWeeCXhOxl1fZQoaAZoCWgPQwjuXu6To+RvQJSGlFKUaBVNFgFoFkdAlZ91kxyn1nV9lChoBmgJaA9DCLA6cqSzPHFAlIaUUpRoFU1IAWgWR0CVn7Heaa1DdX2UKGgGaAloD0MIAB3mywvdcECUhpRSlGgVTSQBaBZHQJWgxkQPI4l1fZQoaAZoCWgPQwg1fuGVpO9tQJSGlFKUaBVNKwFoFkdAlaDnYQJ5V3V9lChoBmgJaA9DCHUhVn/EmHBAlIaUUpRoFU3JAWgWR0CVoRiD/VAidX2UKGgGaAloD0MIrWu0HOhJbECUhpRSlGgVTSABaBZHQJWhMG4ZuQ91fZQoaAZoCWgPQwhPBHEejiFxQJSGlFKUaBVNCwFoFkdAlaE4h6jWTXV9lChoBmgJaA9DCMy1aAHaLm9AlIaUUpRoFU03AWgWR0CVoXRuTA32dX2UKGgGaAloD0MINqypLEpCcUCUhpRSlGgVTSYBaBZHQJWi0mD15B11fZQoaAZoCWgPQwi6oSk7fe5tQJSGlFKUaBVNEAFoFkdAlaO8s+V1OnV9lChoBmgJaA9DCB4y5UPQB3BAlIaUUpRoFU0yAWgWR0CVpCtcv/R3dX2UKGgGaAloD0MIlzyelp/IbkCUhpRSlGgVTRwBaBZHQJWkQS7GvOh1fZQoaAZoCWgPQwg6eZEJOM9wQJSGlFKUaBVNIgFoFkdAlaRcSkCV8nV9lChoBmgJaA9DCB5wXTEja25AlIaUUpRoFU0nAWgWR0CVpbrP+n63dX2UKGgGaAloD0MIrimQ2dmAb0CUhpRSlGgVTRsBaBZHQJWmBaLXL/11fZQoaAZoCWgPQwgP1CmP7uxwQJSGlFKUaBVNHAFoFkdAlaYntrsSkHV9lChoBmgJaA9DCNKNsKiIwG9AlIaUUpRoFU0TAWgWR0CVpyBkqc3EdX2UKGgGaAloD0MIyRzLuyrEcECUhpRSlGgVTR4BaBZHQJWnNyEL6UJ1fZQoaAZoCWgPQwh5AfbRKXByQJSGlFKUaBVNFQFoFkdAlahf8dgfEHV9lChoBmgJaA9DCPCnxks3j29AlIaUUpRoFU0jAWgWR0CVqK4Ia99MdX2UKGgGaAloD0MIMCk+PqElckCUhpRSlGgVTRoBaBZHQJWo2T/yXld1fZQoaAZoCWgPQwj1EfjDTxhyQJSGlFKUaBVNMgFoFkdAlalq33Hq/3V9lChoBmgJaA9DCFSNXg3QUm9AlIaUUpRoFU0xAWgWR0CVqcK9PDYRdX2UKGgGaAloD0MINPeQ8H37cECUhpRSlGgVTTkBaBZHQJWroDJU5uJ1fZQoaAZoCWgPQwgAAtaqXWdzQJSGlFKUaBVNCQFoFkdAlautP1tfonV9lChoBmgJaA9DCDnRrkLKLmxAlIaUUpRoFU0zAWgWR0CVrHYeDFqBdX2UKGgGaAloD0MIdCSX/1CbckCUhpRSlGgVTSEBaBZHQJWsgoH9m6J1fZQoaAZoCWgPQwh6bMuAsydvQJSGlFKUaBVNJQFoFkdAlay+6d1+zHV9lChoBmgJaA9DCHQMyF5vCW5AlIaUUpRoFUv7aBZHQJWtb3dsSCh1fZQoaAZoCWgPQwhiFASPb2twQJSGlFKUaBVNCAFoFkdAla2z2OAAhnV9lChoBmgJaA9DCOG4jJsa429AlIaUUpRoFU0gAWgWR0CVrhtzjm0WdX2UKGgGaAloD0MIgsZMot6FbkCUhpRSlGgVTQEBaBZHQJWusZKnNxF1fZQoaAZoCWgPQwhiZTTyuYBwQJSGlFKUaBVNLAFoFkdAla/p1V5rxnV9lChoBmgJaA9DCEmD29rCDXNAlIaUUpRoFU0YAWgWR0CVxtDL8rI6dX2UKGgGaAloD0MIbHh6pazAcECUhpRSlGgVTSgBaBZHQJXHoogFHJ91fZQoaAZoCWgPQwixGHWt/Q5xQJSGlFKUaBVNGAFoFkdAlcf34TK1X3V9lChoBmgJaA9DCET67esAfXFAlIaUUpRoFU0UAWgWR0CVyDwgkka/dX2UKGgGaAloD0MIzCbAsHzYcECUhpRSlGgVTUABaBZHQJXIisgdOqN1fZQoaAZoCWgPQwjfbkkOWMJuQJSGlFKUaBVL/mgWR0CVyW+fh/AkdX2UKGgGaAloD0MI6WFodXI9UkCUhpRSlGgVS9ZoFkdAlcoKGDcuanV9lChoBmgJaA9DCM8Tz9nCznFAlIaUUpRoFU0iAWgWR0CVymqLS/j9dX2UKGgGaAloD0MIK4VALvEYb0CUhpRSlGgVTQ8BaBZHQJXK+gM+eOJ1fZQoaAZoCWgPQwjAywwbZZNwQJSGlFKUaBVNKwFoFkdAlcuI9cKPXHV9lChoBmgJaA9DCHL6er4mbHBAlIaUUpRoFU0xAWgWR0CVy649X9zfdX2UKGgGaAloD0MIqAGDpE+hb0CUhpRSlGgVTRABaBZHQJXMVs3yZrp1fZQoaAZoCWgPQwh9Ik+SLlByQJSGlFKUaBVNIgFoFkdAlcxzXjENv3V9lChoBmgJaA9DCF2j5UAPXGxAlIaUUpRoFU0KAWgWR0CVzK1b7j1gdX2UKGgGaAloD0MIUprN4zAAc0CUhpRSlGgVTRYBaBZHQJXN/bj94u91fZQoaAZoCWgPQwiM+E7MeqpyQJSGlFKUaBVNEwFoFkdAlc6GhAWznnV9lChoBmgJaA9DCFNCsKredm5AlIaUUpRoFU0FAWgWR0CV0RophF3IdX2UKGgGaAloD0MIMbJkjqUNcECUhpRSlGgVTT0BaBZHQJXRPkLhJiB1fZQoaAZoCWgPQwiH4SNiCp5xQJSGlFKUaBVNQAFoFkdAldGktqYZ23V9lChoBmgJaA9DCIAsRIfAKnFAlIaUUpRoFU03AWgWR0CV0bVX3g1ndX2UKGgGaAloD0MInDQNiuYocUCUhpRSlGgVTRwBaBZHQJXShEKE3851fZQoaAZoCWgPQwgpBHKJ43VxQJSGlFKUaBVL+2gWR0CV00hqTKT0dX2UKGgGaAloD0MI9+l4zACbcECUhpRSlGgVTR0BaBZHQJXTmxzJZGN1fZQoaAZoCWgPQwgBUMWNm/pxQJSGlFKUaBVNPQFoFkdAldQG4EwFknV9lChoBmgJaA9DCNeEtMZgAHBAlIaUUpRoFU0fAWgWR0CV1EUm2LHddX2UKGgGaAloD0MIW18ktOXTYECUhpRSlGgVTegDaBZHQJXUbhYNiH91fZQoaAZoCWgPQwi0HykigztwQJSGlFKUaBVNLAFoFkdAldVxP9DQaHV9lChoBmgJaA9DCMgMVMY/9HJAlIaUUpRoFU0uAWgWR0CV1eBCD28JdX2UKGgGaAloD0MIAg02dR69bECUhpRSlGgVTQgBaBZHQJXW/GKhtch1fZQoaAZoCWgPQwibBG9IIzRyQJSGlFKUaBVNJQFoFkdAlddMbaRISXV9lChoBmgJaA9DCKIpO/2ggXFAlIaUUpRoFU2TAWgWR0CV2MziS7oTdX2UKGgGaAloD0MIstR6v1ECc0CUhpRSlGgVS/ZoFkdAldlKFM7EHnV9lChoBmgJaA9DCA37PbFOrnJAlIaUUpRoFU0KAWgWR0CV2VqNp/PPdX2UKGgGaAloD0MID39N1qiHb0CUhpRSlGgVTRwBaBZHQJXaaeZof0V1fZQoaAZoCWgPQwj+R6ZDZ+5xQJSGlFKUaBVL4WgWR0CV2ya4MF2WdX2UKGgGaAloD0MIBdzz/CkjckCUhpRSlGgVTSIBaBZHQJXbhlFtsN51fZQoaAZoCWgPQwjDgvsBD8ZvQJSGlFKUaBVNYAFoFkdAldwy6cy31HV9lChoBmgJaA9DCAZlGk0uj3FAlIaUUpRoFU0oAWgWR0CV3GikwevIdX2UKGgGaAloD0MIdOygEheeckCUhpRSlGgVTRgBaBZHQJXdDR6Ww/x1fZQoaAZoCWgPQwj1FDlE3IdwQJSGlFKUaBVNOAFoFkdAld0xsZYPoXV9lChoBmgJaA9DCMQHdvzXuHJAlIaUUpRoFU0sAWgWR0CV3TvNNahYdX2UKGgGaAloD0MIqI3qdCBOcECUhpRSlGgVTR4BaBZHQJXeJdhRZU11fZQoaAZoCWgPQwiob5nTZWZyQJSGlFKUaBVNJgFoFkdAld7Dgdfb9XV9lChoBmgJaA9DCGggls2cYnJAlIaUUpRoFU0iAWgWR0CV3+GQ0XP7dX2UKGgGaAloD0MIUIpW7oU0bkCUhpRSlGgVTTQBaBZHQJXgI4//vOR1fZQoaAZoCWgPQwgn3ZbIxYtxQJSGlFKUaBVNEwFoFkdAleDY5ggHNXV9lChoBmgJaA9DCLfSa7MxnnBAlIaUUpRoFU0ZAWgWR0CV4XgUlAu7dX2UKGgGaAloD0MIUu3T8RiOckCUhpRSlGgVTSIBaBZHQJXhzvUjLSx1fZQoaAZoCWgPQwhVh9wMd5BwQJSGlFKUaBVNNAFoFkdAleNhF3IMjXV9lChoBmgJaA9DCBUfn5BdKnJAlIaUUpRoFU0nAWgWR0CV471b7j1gdX2UKGgGaAloD0MIOMDMdzBxcUCUhpRSlGgVTSEBaBZHQJXk2XeFcpt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e3c9e7f2440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e3c9e7f24d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e3c9e7f2560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e3c9e7f25f0>", "_build": "<function ActorCriticPolicy._build at 0x7e3c9e7f2680>", "forward": "<function ActorCriticPolicy.forward at 0x7e3c9e7f2710>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e3c9e7f27a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e3c9e7f2830>", "_predict": "<function ActorCriticPolicy._predict at 0x7e3c9e7f28c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e3c9e7f2950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e3c9e7f29e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e3c9e7f2a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e3c9e800700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695576891785416929, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0yZr2PVkS6O6e7OAk2qTN82HS6OM3dtwAAgD8AAIA/zUz6uq7zjLpto1K70flrtkB7DbtqinQ6AACAPwAAgD+m8bW9KXw3un+Xl7vpAI44ZnLpunhW5TgAAAAAAACAP2ZOE7vhJKK60G9qOheJNTVcM5O5FqOGuQAAgD8AAIA/zUZ/vBT0iLqza3i6Xq2rtOFxf7o4AY85AACAPwAAgD9mkD48FIyZunC1g7srMsq1/EVdOkAdmDoAAIA/AACAP03aUr2uoYe6FQn+uq18JrZwLNM6K9kTOgAAgD8AAIA/ZoeLPOEEoboCp2G8OGICtxL3mTqaV2w2AACAPwAAgD+z3PW9e+KWuoJoXLmz0zm1y6k/OqYCgDgAAIA/AACAP5roQb0USI+6boCOOXnWjjSps8Q6eDaluAAAgD8AAIA/M5crPdOtkD51XvG9b7eTvirVLryZaro8AAAAAAAAAABzHuu9rf95P2DpkLxhjp++CQUZvqWcaj0AAAAAAAAAAJMTMz6S+nc/W7wcPh6Oor4rViA+hvUXvQAAAAAAAAAATadAvfpn1D4jy649tLNbvpwZRj2Kbbu8AAAAAAAAAABmhhY9j35AuqKBzDqxHqs1rouWOhOs8bkAAIA/AACAP5p3n7wfVeS5tMXGOpp5GDRktCQ7fb3ruQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRK/ZElVtKMAWyUTegDjAF0lEdAlJY7W3BpH3V9lChoBkdAYPumLtNSImgHTegDaAhHQJSY8++ueSV1fZQoaAZHQGQmP6KtPpJoB03oA2gIR0CUm3Aq/dqMdX2UKGgGR0BlIT6P8yeqaAdN6ANoCEdAlJylBUrCnHV9lChoBkdAZ1jEMspXqGgHTegDaAhHQJSc0PGyX2N1fZQoaAZHQGXXGdqcmShoB03oA2gIR0CUn669CeEqdX2UKGgGR0BnmwJ3PiT/aAdN6ANoCEdAlKRBbfP5YnV9lChoBkdAZsMki2UjcGgHTegDaAhHQJSvuoYNy5t1fZQoaAZHQGBposiB5HFoB03oA2gIR0CUslfR/mT1dX2UKGgGR0BjTwIjW07baAdN6ANoCEdAlMCnQla8pXV9lChoBkdAZ5nV1fVqe2gHTegDaAhHQJTEFpJwsGx1fZQoaAZHQGCvCVKPGQ1oB03oA2gIR0CUzIjjJdSmdX2UKGgGR0BkIiYw7DEWaAdN6ANoCEdAlM6/dIoVmHV9lChoBkdAXjPPa+N96WgHTegDaAhHQJTj10p3HJd1fZQoaAZHQGhjbEHdGiJoB03oA2gIR0CU5ia3qiXZdX2UKGgGR0BmOv8n/kvLaAdN6ANoCEdAlOb36AOJ+HV9lChoBkdAYo4FKTSssGgHTegDaAhHQJT1BYmsvIx1fZQoaAZHQGGJDkU9IPNoB03oA2gIR0CU+I9rXUYsdX2UKGgGR0BhuN/e+Eh8aAdN6ANoCEdAlPrtzjm0V3V9lChoBkdAX31UKiO/+WgHTegDaAhHQJT8KRHPNV11fZQoaAZHQGN0nNPgvUVoB03oA2gIR0CU/FafjCHidX2UKGgGR0BkvSkRBeHBaAdN6ANoCEdAlP8BWHUMHHV9lChoBkdAYwIVj7Q9imgHTegDaAhHQJUDfyauwHJ1fZQoaAZHQFA1nzQNTcZoB0vaaAhHQJUE/zMA3kx1fZQoaAZHQGP6IxpL26FoB03oA2gIR0CVDEK+i8FqdX2UKGgGR0BkDazPa+N+aAdN6ANoCEdAlQ3sLncL0HV9lChoBkdAZIwTOgQHzGgHTegDaAhHQJUX379AHFB1fZQoaAZHQGaNl3yI55toB03oA2gIR0CVGwq59Vm0dX2UKGgGR0Bkfq83++/QaAdN6ANoCEdAlSTsLF4s3HV9lChoBkdAYJ1Q9A5aNmgHTegDaAhHQJUn2hdt2s91fZQoaAZHQGdMyeAd4mloB03oA2gIR0CVQgQE6kqMdX2UKGgGR0Bhpnjfek57aAdN6ANoCEdAlUOp/oaDPHV9lChoBkdAZ9+N3GGVRmgHTegDaAhHQJVEN4IKMNt1fZQoaAZHQGLFU7jkuHxoB03oA2gIR0CVTeAPNFBqdX2UKGgGR0BlDlLJ0W/KaAdN6ANoCEdAlVNSoKlYU3V9lChoBkdAYbUOJcgQpWgHTegDaAhHQJVUmUpuuRt1fZQoaAZHQGJlRvm5lOJoB03oA2gIR0CVVMg7YChfdX2UKGgGR0Bke9kjHGS7aAdN6ANoCEdAlVfFMdtEX3V9lChoBkdAZ2z1HOKO1mgHTegDaAhHQJVcsyfthNN1fZQoaAZHQGQefsNUfgdoB03oA2gIR0CVXkeNDMNddX2UKGgGR0BilZ8KG+K1aAdN6ANoCEdAlWc4FaB7NXV9lChoBkdAZH+UeMhoumgHTegDaAhHQJVpqrCFbml1fZQoaAZHQGbg8580DU5oB03oA2gIR0CVdaQzUI9ldX2UKGgGR0BhCtORDCxeaAdN6ANoCEdAlXiMiGFi8XV9lChoBkdAYQpjGT9sJ2gHTegDaAhHQJV/1SKm8/V1fZQoaAZHQGJEAf2bobJoB03oA2gIR0CVgZlLvkR0dX2UKGgGR0BhKKkqMFUyaAdN6ANoCEdAlYVbftQbdnV9lChoBkdAZXVBZZB9kWgHTegDaAhHQJWW23QUpNN1fZQoaAZHQGbepLmITGpoB03oA2gIR0CVl1Yj0L+hdX2UKGgGR0BmlXl8w5/9aAdN6ANoCEdAlaGfrWy1NXV9lChoBkdAZe9WHUMG5mgHTegDaAhHQJWpHVRUFSt1fZQoaAZHQGjGRAKOT7loB03oA2gIR0CVqujGkvbodX2UKGgGR0BhdFWhh6SlaAdN6ANoCEdAlaswH7gsLHV9lChoBkdAYU2LsKLKm2gHTegDaAhHQJWvaVyFPBV1fZQoaAZHQGNfOZssQNFoB03oA2gIR0CVtLhIOH32dX2UKGgGR0BiP4S6DoQnaAdN6ANoCEdAlbYk3XI2fnV9lChoBkdAZ5pwkPczqWgHTegDaAhHQJW9DeWOZLJ1fZQoaAZHQGdZaQmu1WtoB03oA2gIR0CVvqD0Dlo2dX2UKGgGR0BiVIBkqc3EaAdN6ANoCEdAlcgsdkrf+HV9lChoBkdAaO8igTRIBmgHTegDaAhHQJXLEO3DvVp1fZQoaAZHQF2WHZ9NN8FoB03oA2gIR0CV0kRradtmdX2UKGgGR0Bwny925hBraAdN9QFoCEdAldPAQ176YXV9lChoBkdAY3KWRA8jiWgHTegDaAhHQJXUAcABDG91fZQoaAZHQGR3uGKyfL9oB03oA2gIR0CV143nZCfIdX2UKGgGR0Bgxa/qPfbcaAdN6ANoCEdAldjhxtHhCXV9lChoBkdAYQwcd5prUWgHTegDaAhHQJXZnCiyprF1fZQoaAZHP9mSDAaef7JoB0v2aAhHQJX25h/iHZd1fZQoaAZHQGKlKe9SMtNoB03oA2gIR0CV976NEPUbdX2UKGgGR0BlGDADaGpNaAdN6ANoCEdAlfwCv1UVBXV9lChoBkdAZIv8twrDqGgHTegDaAhHQJX9GWkadc11fZQoaAZHQGUgnVoYekpoB03oA2gIR0CV/UJrtVrAdX2UKGgGR0Bg6imsNlRQaAdN6ANoCEdAlf/BvitJWnV9lChoBkdAZvPjCpFTemgHTegDaAhHQJYFjeEZiux1fZQoaAZHQGTzkLQXyiFoB03oA2gIR0CWDElZowmFdX2UKGgGR0BnI331zySWaAdN6ANoCEdAlg3krGza9XV9lChoBkdANHGcJ+lTFWgHS/FoCEdAlhRTB2wFDHV9lChoBkdAZVFSDRMN+mgHTegDaAhHQJYYEmPYFq11fZQoaAZHQGLSiPhhpg1oB03oA2gIR0CWG/GGVRk3dX2UKGgGR0BxvWUNayKOaAdNFAJoCEdAlh2esgdOqXV9lChoBkdAYGKhEjPfK2gHTegDaAhHQJYln2TPjXF1fZQoaAZHQGYrOSGJvYRoB03oA2gIR0CWKE5RCQcQdX2UKGgGR0Bk2vVVghKUaAdN6ANoCEdAli0yauwHJXV9lChoBkdAaGqTINmUW2gHTegDaAhHQJYuk+IMz/J1fZQoaAZHQGc/r2HtWuJoB03oA2gIR0CWLw+PBBRidX2UKGgGR0BfqS8FpwjuaAdN6ANoCEdAlkaI8EFGG3V9lChoBkdAZ/AOc2BJ7WgHTegDaAhHQJZHiLS/j811fZQoaAZHQCZSqIacZtNoB0viaAhHQJZJfP+n62x1fZQoaAZHQGEq9ETg2qFoB03oA2gIR0CWTUxgiNbUdX2UKGgGR0BnwTdvbXYlaAdN6ANoCEdAlk10zTF2m3V9lChoBkdAYwQVpsXSB2gHTegDaAhHQJZQB5+pfhN1fZQoaAZHQGUHn6VMVUNoB03oA2gIR0CWYLkHUtqYdX2UKGgGR0Bef80tRNypaAdN6ANoCEdAlmMnnIQvpXV9lChoBkdAZu1UkOZssWgHTegDaAhHQJZqtlsguAZ1fZQoaAZHQGQvCk43m3hoB03oA2gIR0CWbZmA9V3mdX2UKGgGR0BeThLkCFK1aAdN6ANoCEdAlnAU7fYSQHV9lChoBkdAYqYee4Cp32gHTegDaAhHQJZxMawUxmF1fZQoaAZHQF72B7NSqERoB03oA2gIR0CWdmrwvxpddX2UKGgGR0Bngw0j1PFeaAdN6ANoCEdAlngY/Z/Tb3V9lChoBkdAZPytWdVebGgHTegDaAhHQJZ9KmQ8wHt1fZQoaAZHQGO9qoZQ53loB03oA2gIR0CWfbF36hxpdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-sb3-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2b373f0b07ca7f189236ece7bc659cc6869ef4b64b71163aeeb92c8f309a32e
|
3 |
+
size 146751
|
ppo-sb3-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-sb3-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e3c9e7f2440>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e3c9e7f24d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e3c9e7f2560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e3c9e7f25f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e3c9e7f2680>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e3c9e7f2710>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e3c9e7f27a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e3c9e7f2830>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e3c9e7f28c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e3c9e7f2950>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e3c9e7f29e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e3c9e7f2a70>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e3c9e800700>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1695576891785416929,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0yZr2PVkS6O6e7OAk2qTN82HS6OM3dtwAAgD8AAIA/zUz6uq7zjLpto1K70flrtkB7DbtqinQ6AACAPwAAgD+m8bW9KXw3un+Xl7vpAI44ZnLpunhW5TgAAAAAAACAP2ZOE7vhJKK60G9qOheJNTVcM5O5FqOGuQAAgD8AAIA/zUZ/vBT0iLqza3i6Xq2rtOFxf7o4AY85AACAPwAAgD9mkD48FIyZunC1g7srMsq1/EVdOkAdmDoAAIA/AACAP03aUr2uoYe6FQn+uq18JrZwLNM6K9kTOgAAgD8AAIA/ZoeLPOEEoboCp2G8OGICtxL3mTqaV2w2AACAPwAAgD+z3PW9e+KWuoJoXLmz0zm1y6k/OqYCgDgAAIA/AACAP5roQb0USI+6boCOOXnWjjSps8Q6eDaluAAAgD8AAIA/M5crPdOtkD51XvG9b7eTvirVLryZaro8AAAAAAAAAABzHuu9rf95P2DpkLxhjp++CQUZvqWcaj0AAAAAAAAAAJMTMz6S+nc/W7wcPh6Oor4rViA+hvUXvQAAAAAAAAAATadAvfpn1D4jy649tLNbvpwZRj2Kbbu8AAAAAAAAAABmhhY9j35AuqKBzDqxHqs1rouWOhOs8bkAAIA/AACAP5p3n7wfVeS5tMXGOpp5GDRktCQ7fb3ruQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRK/ZElVtKMAWyUTegDjAF0lEdAlJY7W3BpH3V9lChoBkdAYPumLtNSImgHTegDaAhHQJSY8++ueSV1fZQoaAZHQGQmP6KtPpJoB03oA2gIR0CUm3Aq/dqMdX2UKGgGR0BlIT6P8yeqaAdN6ANoCEdAlJylBUrCnHV9lChoBkdAZ1jEMspXqGgHTegDaAhHQJSc0PGyX2N1fZQoaAZHQGXXGdqcmShoB03oA2gIR0CUn669CeEqdX2UKGgGR0BnmwJ3PiT/aAdN6ANoCEdAlKRBbfP5YnV9lChoBkdAZsMki2UjcGgHTegDaAhHQJSvuoYNy5t1fZQoaAZHQGBposiB5HFoB03oA2gIR0CUslfR/mT1dX2UKGgGR0BjTwIjW07baAdN6ANoCEdAlMCnQla8pXV9lChoBkdAZ5nV1fVqe2gHTegDaAhHQJTEFpJwsGx1fZQoaAZHQGCvCVKPGQ1oB03oA2gIR0CUzIjjJdSmdX2UKGgGR0BkIiYw7DEWaAdN6ANoCEdAlM6/dIoVmHV9lChoBkdAXjPPa+N96WgHTegDaAhHQJTj10p3HJd1fZQoaAZHQGhjbEHdGiJoB03oA2gIR0CU5ia3qiXZdX2UKGgGR0BmOv8n/kvLaAdN6ANoCEdAlOb36AOJ+HV9lChoBkdAYo4FKTSssGgHTegDaAhHQJT1BYmsvIx1fZQoaAZHQGGJDkU9IPNoB03oA2gIR0CU+I9rXUYsdX2UKGgGR0BhuN/e+Eh8aAdN6ANoCEdAlPrtzjm0V3V9lChoBkdAX31UKiO/+WgHTegDaAhHQJT8KRHPNV11fZQoaAZHQGN0nNPgvUVoB03oA2gIR0CU/FafjCHidX2UKGgGR0BkvSkRBeHBaAdN6ANoCEdAlP8BWHUMHHV9lChoBkdAYwIVj7Q9imgHTegDaAhHQJUDfyauwHJ1fZQoaAZHQFA1nzQNTcZoB0vaaAhHQJUE/zMA3kx1fZQoaAZHQGP6IxpL26FoB03oA2gIR0CVDEK+i8FqdX2UKGgGR0BkDazPa+N+aAdN6ANoCEdAlQ3sLncL0HV9lChoBkdAZIwTOgQHzGgHTegDaAhHQJUX379AHFB1fZQoaAZHQGaNl3yI55toB03oA2gIR0CVGwq59Vm0dX2UKGgGR0Bkfq83++/QaAdN6ANoCEdAlSTsLF4s3HV9lChoBkdAYJ1Q9A5aNmgHTegDaAhHQJUn2hdt2s91fZQoaAZHQGdMyeAd4mloB03oA2gIR0CVQgQE6kqMdX2UKGgGR0Bhpnjfek57aAdN6ANoCEdAlUOp/oaDPHV9lChoBkdAZ9+N3GGVRmgHTegDaAhHQJVEN4IKMNt1fZQoaAZHQGLFU7jkuHxoB03oA2gIR0CVTeAPNFBqdX2UKGgGR0BlDlLJ0W/KaAdN6ANoCEdAlVNSoKlYU3V9lChoBkdAYbUOJcgQpWgHTegDaAhHQJVUmUpuuRt1fZQoaAZHQGJlRvm5lOJoB03oA2gIR0CVVMg7YChfdX2UKGgGR0Bke9kjHGS7aAdN6ANoCEdAlVfFMdtEX3V9lChoBkdAZ2z1HOKO1mgHTegDaAhHQJVcsyfthNN1fZQoaAZHQGQefsNUfgdoB03oA2gIR0CVXkeNDMNddX2UKGgGR0BilZ8KG+K1aAdN6ANoCEdAlWc4FaB7NXV9lChoBkdAZH+UeMhoumgHTegDaAhHQJVpqrCFbml1fZQoaAZHQGbg8580DU5oB03oA2gIR0CVdaQzUI9ldX2UKGgGR0BhCtORDCxeaAdN6ANoCEdAlXiMiGFi8XV9lChoBkdAYQpjGT9sJ2gHTegDaAhHQJV/1SKm8/V1fZQoaAZHQGJEAf2bobJoB03oA2gIR0CVgZlLvkR0dX2UKGgGR0BhKKkqMFUyaAdN6ANoCEdAlYVbftQbdnV9lChoBkdAZXVBZZB9kWgHTegDaAhHQJWW23QUpNN1fZQoaAZHQGbepLmITGpoB03oA2gIR0CVl1Yj0L+hdX2UKGgGR0BmlXl8w5/9aAdN6ANoCEdAlaGfrWy1NXV9lChoBkdAZe9WHUMG5mgHTegDaAhHQJWpHVRUFSt1fZQoaAZHQGjGRAKOT7loB03oA2gIR0CVqujGkvbodX2UKGgGR0BhdFWhh6SlaAdN6ANoCEdAlaswH7gsLHV9lChoBkdAYU2LsKLKm2gHTegDaAhHQJWvaVyFPBV1fZQoaAZHQGNfOZssQNFoB03oA2gIR0CVtLhIOH32dX2UKGgGR0BiP4S6DoQnaAdN6ANoCEdAlbYk3XI2fnV9lChoBkdAZ5pwkPczqWgHTegDaAhHQJW9DeWOZLJ1fZQoaAZHQGdZaQmu1WtoB03oA2gIR0CVvqD0Dlo2dX2UKGgGR0BiVIBkqc3EaAdN6ANoCEdAlcgsdkrf+HV9lChoBkdAaO8igTRIBmgHTegDaAhHQJXLEO3DvVp1fZQoaAZHQF2WHZ9NN8FoB03oA2gIR0CV0kRradtmdX2UKGgGR0Bwny925hBraAdN9QFoCEdAldPAQ176YXV9lChoBkdAY3KWRA8jiWgHTegDaAhHQJXUAcABDG91fZQoaAZHQGR3uGKyfL9oB03oA2gIR0CV143nZCfIdX2UKGgGR0Bgxa/qPfbcaAdN6ANoCEdAldjhxtHhCXV9lChoBkdAYQwcd5prUWgHTegDaAhHQJXZnCiyprF1fZQoaAZHP9mSDAaef7JoB0v2aAhHQJX25h/iHZd1fZQoaAZHQGKlKe9SMtNoB03oA2gIR0CV976NEPUbdX2UKGgGR0BlGDADaGpNaAdN6ANoCEdAlfwCv1UVBXV9lChoBkdAZIv8twrDqGgHTegDaAhHQJX9GWkadc11fZQoaAZHQGUgnVoYekpoB03oA2gIR0CV/UJrtVrAdX2UKGgGR0Bg6imsNlRQaAdN6ANoCEdAlf/BvitJWnV9lChoBkdAZvPjCpFTemgHTegDaAhHQJYFjeEZiux1fZQoaAZHQGTzkLQXyiFoB03oA2gIR0CWDElZowmFdX2UKGgGR0BnI331zySWaAdN6ANoCEdAlg3krGza9XV9lChoBkdANHGcJ+lTFWgHS/FoCEdAlhRTB2wFDHV9lChoBkdAZVFSDRMN+mgHTegDaAhHQJYYEmPYFq11fZQoaAZHQGLSiPhhpg1oB03oA2gIR0CWG/GGVRk3dX2UKGgGR0BxvWUNayKOaAdNFAJoCEdAlh2esgdOqXV9lChoBkdAYGKhEjPfK2gHTegDaAhHQJYln2TPjXF1fZQoaAZHQGYrOSGJvYRoB03oA2gIR0CWKE5RCQcQdX2UKGgGR0Bk2vVVghKUaAdN6ANoCEdAli0yauwHJXV9lChoBkdAaGqTINmUW2gHTegDaAhHQJYuk+IMz/J1fZQoaAZHQGc/r2HtWuJoB03oA2gIR0CWLw+PBBRidX2UKGgGR0BfqS8FpwjuaAdN6ANoCEdAlkaI8EFGG3V9lChoBkdAZ/AOc2BJ7WgHTegDaAhHQJZHiLS/j811fZQoaAZHQCZSqIacZtNoB0viaAhHQJZJfP+n62x1fZQoaAZHQGEq9ETg2qFoB03oA2gIR0CWTUxgiNbUdX2UKGgGR0BnwTdvbXYlaAdN6ANoCEdAlk10zTF2m3V9lChoBkdAYwQVpsXSB2gHTegDaAhHQJZQB5+pfhN1fZQoaAZHQGUHn6VMVUNoB03oA2gIR0CWYLkHUtqYdX2UKGgGR0Bef80tRNypaAdN6ANoCEdAlmMnnIQvpXV9lChoBkdAZu1UkOZssWgHTegDaAhHQJZqtlsguAZ1fZQoaAZHQGQvCk43m3hoB03oA2gIR0CWbZmA9V3mdX2UKGgGR0BeThLkCFK1aAdN6ANoCEdAlnAU7fYSQHV9lChoBkdAYqYee4Cp32gHTegDaAhHQJZxMawUxmF1fZQoaAZHQF72B7NSqERoB03oA2gIR0CWdmrwvxpddX2UKGgGR0Bngw0j1PFeaAdN6ANoCEdAlngY/Z/Tb3V9lChoBkdAZPytWdVebGgHTegDaAhHQJZ9KmQ8wHt1fZQoaAZHQGO9qoZQ53loB03oA2gIR0CWfbF36hxpdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-sb3-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7e246ffd21fa48f30ace4d173b9098db3bbb01e9652951b084efc1f713b83fd
|
3 |
+
size 87929
|
ppo-sb3-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e50162adacc0bd76ffe1495f14d6fc0bb471e9f6330abad57efc531f5c3e479
|
3 |
+
size 43329
|
ppo-sb3-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-sb3-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"mean_reward": 270.3727971, "std_reward": 16.262284877985444, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-24T18:08:29.612290"}
|