pabloyesteb commited on
Commit
08d22e6
1 Parent(s): 97a8314

Push del tema 1

Browse files
README.md CHANGED
@@ -1,11 +1,10 @@
1
  ---
 
2
  tags:
3
  - LunarLander-v2
4
- - ppo
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
- - custom-implementation
8
- - deep-rl-course
9
  model-index:
10
  - name: PPO
11
  results:
@@ -17,45 +16,22 @@ model-index:
17
  type: LunarLander-v2
18
  metrics:
19
  - type: mean_reward
20
- value: -144.15 +/- 74.57
21
  name: mean_reward
22
  verified: false
23
  ---
24
 
25
- # PPO Agent Playing LunarLander-v2
 
 
26
 
27
- This is a trained model of a PPO agent playing LunarLander-v2.
 
28
 
29
- # Hyperparameters
30
- ```python
31
- {'exp_name': 'ppo_sol'
32
- 'seed': 1
33
- 'torch_deterministic': True
34
- 'cuda': True
35
- 'track': True
36
- 'wandb_project_name': 'cleanRL'
37
- 'wandb_entity': None
38
- 'capture_video': True
39
- 'env_id': 'LunarLander-v2'
40
- 'total_timesteps': 50000
41
- 'learning_rate': 0.00025
42
- 'num_envs': 4
43
- 'num_steps': 128
44
- 'anneal_lr': True
45
- 'gae': True
46
- 'gamma': 0.99
47
- 'gae_lambda': 0.95
48
- 'num_minibatches': 4
49
- 'update_epochs': 4
50
- 'norm_adv': True
51
- 'clip_coef': 0.2
52
- 'clip_vloss': True
53
- 'ent_coef': 0.01
54
- 'vf_coef': 0.5
55
- 'max_grad_norm': 0.5
56
- 'target_kl': None
57
- 'repo_id': 'pabloyesteb/ppo-LunarLander-v2'
58
- 'batch_size': 512
59
- 'minibatch_size': 128}
60
- ```
61
-
 
1
  ---
2
+ library_name: stable-baselines3
3
  tags:
4
  - LunarLander-v2
 
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
+ - stable-baselines3
 
8
  model-index:
9
  - name: PPO
10
  results:
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 270.37 +/- 16.26
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
 
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efbbebee310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efbbebee3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efbbebee430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efbbebee4c0>", "_build": "<function ActorCriticPolicy._build at 0x7efbbebee550>", "forward": "<function ActorCriticPolicy.forward at 0x7efbbebee5e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efbbebee670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efbbebee700>", "_predict": "<function ActorCriticPolicy._predict at 0x7efbbebee790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efbbebee820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efbbebee8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efbbebee940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efbbebef3c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680606184147528895, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbIQL1XNxg8Kl5TPstUBr60egk9aIr5uwAAAAAAAAAAa9vBvuhx9j429YY+Cwlwvs0vir1W8hI8AAAAAAAAAAAd4YW+lCkxvdzyxLu7e1u6zlqbPimwHjsAAIA/AACAP6YyZb7TX4k/NkWhvjts6b7zPiu+lM8LPQAAAAAAAAAATSbNvcUMZD61SZM9LFI8vjiXRz3O/Eu9AAAAAAAAAABmBZW8KaBJukJA5Ttu6PCwrvMAuugH27MAAIA/AACAP836Yz5w+SE/HTByvsm2x757lHA9ZJQCvgAAAAAAAAAAABQgvEwXsz8gOfq+V52MvtYeGzz595k9AAAAAAAAAADq2aq+0XTrPntdxj2jr7O+RFQ2visVbT0AAAAAAAAAAJrhZLvX8306vU9Qu5s5hL1gQG48LaJrvgAAAAAAAIA/Zo5mvXuQiLo+xYQ8/UUkPfgcGzv0xQo+AACAPwAAgD8zHmu9w6lhug0sADslapw24X1RO4aQlTUAAIA/AAAAALqWAj5bmqo/poicPqGRv77fJlI+/zcvPgAAAAAAAAAADUGdPXSvqbyyQko9S4pMuwY+Fb6WBCG8AACAPwAAgD/NlsG86tgyPsZ7ab3SBYK+oF7JvQaLcj0AAAAAAAAAAJqhwDzsR9u7lf3NPbFv5zwryCC9qMy/PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbJbLRufXcUCUhpRSlIwBbJRNBgGMAXSUR0CVls92X9iudX2UKGgGaAloD0MIPWGJBxSncUCUhpRSlGgVTTYBaBZHQJWW2curZJ11fZQoaAZoCWgPQwjGwaVjjjNwQJSGlFKUaBVN1QFoFkdAlZeChN/OMXV9lChoBmgJaA9DCNTRcTWy1UxAlIaUUpRoFUviaBZHQJWYXlMh5gR1fZQoaAZoCWgPQwj9n8N8OfBxQJSGlFKUaBVNMAFoFkdAlZh1eruIAXV9lChoBmgJaA9DCN2yQ/zDC3BAlIaUUpRoFU1sAWgWR0CVmKFpwjt5dX2UKGgGaAloD0MIZcVwdYASb0CUhpRSlGgVTSkBaBZHQJWY9ygf2bp1fZQoaAZoCWgPQwhl3xXB/ydtQJSGlFKUaBVNIQFoFkdAlZmDX8O09nV9lChoBmgJaA9DCLvQXKcRr3FAlIaUUpRoFU0ZAWgWR0CVmobR4QjEdX2UKGgGaAloD0MInKIjufwMbkCUhpRSlGgVTVsBaBZHQJWblSl3yI51fZQoaAZoCWgPQwhBSYEFsGhwQJSGlFKUaBVNNwFoFkdAlZwcf7rLQ3V9lChoBmgJaA9DCNxj6UPXQXFAlIaUUpRoFU0gAWgWR0CVnExqO939dX2UKGgGaAloD0MIvvVhvdHVbECUhpRSlGgVTRMBaBZHQJWcWJWNm191fZQoaAZoCWgPQwivIqMDkitwQJSGlFKUaBVNCwFoFkdAlZ2zSkTHsHV9lChoBmgJaA9DCMpskEkGxHJAlIaUUpRoFU0HAWgWR0CVnmDMNc4YdX2UKGgGaAloD0MInN7F+/Fab0CUhpRSlGgVTQsBaBZHQJWeeCXhOxl1fZQoaAZoCWgPQwjuXu6To+RvQJSGlFKUaBVNFgFoFkdAlZ91kxyn1nV9lChoBmgJaA9DCLA6cqSzPHFAlIaUUpRoFU1IAWgWR0CVn7Heaa1DdX2UKGgGaAloD0MIAB3mywvdcECUhpRSlGgVTSQBaBZHQJWgxkQPI4l1fZQoaAZoCWgPQwg1fuGVpO9tQJSGlFKUaBVNKwFoFkdAlaDnYQJ5V3V9lChoBmgJaA9DCHUhVn/EmHBAlIaUUpRoFU3JAWgWR0CVoRiD/VAidX2UKGgGaAloD0MIrWu0HOhJbECUhpRSlGgVTSABaBZHQJWhMG4ZuQ91fZQoaAZoCWgPQwhPBHEejiFxQJSGlFKUaBVNCwFoFkdAlaE4h6jWTXV9lChoBmgJaA9DCMy1aAHaLm9AlIaUUpRoFU03AWgWR0CVoXRuTA32dX2UKGgGaAloD0MINqypLEpCcUCUhpRSlGgVTSYBaBZHQJWi0mD15B11fZQoaAZoCWgPQwi6oSk7fe5tQJSGlFKUaBVNEAFoFkdAlaO8s+V1OnV9lChoBmgJaA9DCB4y5UPQB3BAlIaUUpRoFU0yAWgWR0CVpCtcv/R3dX2UKGgGaAloD0MIlzyelp/IbkCUhpRSlGgVTRwBaBZHQJWkQS7GvOh1fZQoaAZoCWgPQwg6eZEJOM9wQJSGlFKUaBVNIgFoFkdAlaRcSkCV8nV9lChoBmgJaA9DCB5wXTEja25AlIaUUpRoFU0nAWgWR0CVpbrP+n63dX2UKGgGaAloD0MIrimQ2dmAb0CUhpRSlGgVTRsBaBZHQJWmBaLXL/11fZQoaAZoCWgPQwgP1CmP7uxwQJSGlFKUaBVNHAFoFkdAlaYntrsSkHV9lChoBmgJaA9DCNKNsKiIwG9AlIaUUpRoFU0TAWgWR0CVpyBkqc3EdX2UKGgGaAloD0MIyRzLuyrEcECUhpRSlGgVTR4BaBZHQJWnNyEL6UJ1fZQoaAZoCWgPQwh5AfbRKXByQJSGlFKUaBVNFQFoFkdAlahf8dgfEHV9lChoBmgJaA9DCPCnxks3j29AlIaUUpRoFU0jAWgWR0CVqK4Ia99MdX2UKGgGaAloD0MIMCk+PqElckCUhpRSlGgVTRoBaBZHQJWo2T/yXld1fZQoaAZoCWgPQwj1EfjDTxhyQJSGlFKUaBVNMgFoFkdAlalq33Hq/3V9lChoBmgJaA9DCFSNXg3QUm9AlIaUUpRoFU0xAWgWR0CVqcK9PDYRdX2UKGgGaAloD0MINPeQ8H37cECUhpRSlGgVTTkBaBZHQJWroDJU5uJ1fZQoaAZoCWgPQwgAAtaqXWdzQJSGlFKUaBVNCQFoFkdAlautP1tfonV9lChoBmgJaA9DCDnRrkLKLmxAlIaUUpRoFU0zAWgWR0CVrHYeDFqBdX2UKGgGaAloD0MIdCSX/1CbckCUhpRSlGgVTSEBaBZHQJWsgoH9m6J1fZQoaAZoCWgPQwh6bMuAsydvQJSGlFKUaBVNJQFoFkdAlay+6d1+zHV9lChoBmgJaA9DCHQMyF5vCW5AlIaUUpRoFUv7aBZHQJWtb3dsSCh1fZQoaAZoCWgPQwhiFASPb2twQJSGlFKUaBVNCAFoFkdAla2z2OAAhnV9lChoBmgJaA9DCOG4jJsa429AlIaUUpRoFU0gAWgWR0CVrhtzjm0WdX2UKGgGaAloD0MIgsZMot6FbkCUhpRSlGgVTQEBaBZHQJWusZKnNxF1fZQoaAZoCWgPQwhiZTTyuYBwQJSGlFKUaBVNLAFoFkdAla/p1V5rxnV9lChoBmgJaA9DCEmD29rCDXNAlIaUUpRoFU0YAWgWR0CVxtDL8rI6dX2UKGgGaAloD0MIbHh6pazAcECUhpRSlGgVTSgBaBZHQJXHoogFHJ91fZQoaAZoCWgPQwixGHWt/Q5xQJSGlFKUaBVNGAFoFkdAlcf34TK1X3V9lChoBmgJaA9DCET67esAfXFAlIaUUpRoFU0UAWgWR0CVyDwgkka/dX2UKGgGaAloD0MIzCbAsHzYcECUhpRSlGgVTUABaBZHQJXIisgdOqN1fZQoaAZoCWgPQwjfbkkOWMJuQJSGlFKUaBVL/mgWR0CVyW+fh/AkdX2UKGgGaAloD0MI6WFodXI9UkCUhpRSlGgVS9ZoFkdAlcoKGDcuanV9lChoBmgJaA9DCM8Tz9nCznFAlIaUUpRoFU0iAWgWR0CVymqLS/j9dX2UKGgGaAloD0MIK4VALvEYb0CUhpRSlGgVTQ8BaBZHQJXK+gM+eOJ1fZQoaAZoCWgPQwjAywwbZZNwQJSGlFKUaBVNKwFoFkdAlcuI9cKPXHV9lChoBmgJaA9DCHL6er4mbHBAlIaUUpRoFU0xAWgWR0CVy649X9zfdX2UKGgGaAloD0MIqAGDpE+hb0CUhpRSlGgVTRABaBZHQJXMVs3yZrp1fZQoaAZoCWgPQwh9Ik+SLlByQJSGlFKUaBVNIgFoFkdAlcxzXjENv3V9lChoBmgJaA9DCF2j5UAPXGxAlIaUUpRoFU0KAWgWR0CVzK1b7j1gdX2UKGgGaAloD0MIUprN4zAAc0CUhpRSlGgVTRYBaBZHQJXN/bj94u91fZQoaAZoCWgPQwiM+E7MeqpyQJSGlFKUaBVNEwFoFkdAlc6GhAWznnV9lChoBmgJaA9DCFNCsKredm5AlIaUUpRoFU0FAWgWR0CV0RophF3IdX2UKGgGaAloD0MIMbJkjqUNcECUhpRSlGgVTT0BaBZHQJXRPkLhJiB1fZQoaAZoCWgPQwiH4SNiCp5xQJSGlFKUaBVNQAFoFkdAldGktqYZ23V9lChoBmgJaA9DCIAsRIfAKnFAlIaUUpRoFU03AWgWR0CV0bVX3g1ndX2UKGgGaAloD0MInDQNiuYocUCUhpRSlGgVTRwBaBZHQJXShEKE3851fZQoaAZoCWgPQwgpBHKJ43VxQJSGlFKUaBVL+2gWR0CV00hqTKT0dX2UKGgGaAloD0MI9+l4zACbcECUhpRSlGgVTR0BaBZHQJXTmxzJZGN1fZQoaAZoCWgPQwgBUMWNm/pxQJSGlFKUaBVNPQFoFkdAldQG4EwFknV9lChoBmgJaA9DCNeEtMZgAHBAlIaUUpRoFU0fAWgWR0CV1EUm2LHddX2UKGgGaAloD0MIW18ktOXTYECUhpRSlGgVTegDaBZHQJXUbhYNiH91fZQoaAZoCWgPQwi0HykigztwQJSGlFKUaBVNLAFoFkdAldVxP9DQaHV9lChoBmgJaA9DCMgMVMY/9HJAlIaUUpRoFU0uAWgWR0CV1eBCD28JdX2UKGgGaAloD0MIAg02dR69bECUhpRSlGgVTQgBaBZHQJXW/GKhtch1fZQoaAZoCWgPQwibBG9IIzRyQJSGlFKUaBVNJQFoFkdAlddMbaRISXV9lChoBmgJaA9DCKIpO/2ggXFAlIaUUpRoFU2TAWgWR0CV2MziS7oTdX2UKGgGaAloD0MIstR6v1ECc0CUhpRSlGgVS/ZoFkdAldlKFM7EHnV9lChoBmgJaA9DCA37PbFOrnJAlIaUUpRoFU0KAWgWR0CV2VqNp/PPdX2UKGgGaAloD0MID39N1qiHb0CUhpRSlGgVTRwBaBZHQJXaaeZof0V1fZQoaAZoCWgPQwj+R6ZDZ+5xQJSGlFKUaBVL4WgWR0CV2ya4MF2WdX2UKGgGaAloD0MIBdzz/CkjckCUhpRSlGgVTSIBaBZHQJXbhlFtsN51fZQoaAZoCWgPQwjDgvsBD8ZvQJSGlFKUaBVNYAFoFkdAldwy6cy31HV9lChoBmgJaA9DCAZlGk0uj3FAlIaUUpRoFU0oAWgWR0CV3GikwevIdX2UKGgGaAloD0MIdOygEheeckCUhpRSlGgVTRgBaBZHQJXdDR6Ww/x1fZQoaAZoCWgPQwj1FDlE3IdwQJSGlFKUaBVNOAFoFkdAld0xsZYPoXV9lChoBmgJaA9DCMQHdvzXuHJAlIaUUpRoFU0sAWgWR0CV3TvNNahYdX2UKGgGaAloD0MIqI3qdCBOcECUhpRSlGgVTR4BaBZHQJXeJdhRZU11fZQoaAZoCWgPQwiob5nTZWZyQJSGlFKUaBVNJgFoFkdAld7Dgdfb9XV9lChoBmgJaA9DCGggls2cYnJAlIaUUpRoFU0iAWgWR0CV3+GQ0XP7dX2UKGgGaAloD0MIUIpW7oU0bkCUhpRSlGgVTTQBaBZHQJXgI4//vOR1fZQoaAZoCWgPQwgn3ZbIxYtxQJSGlFKUaBVNEwFoFkdAleDY5ggHNXV9lChoBmgJaA9DCLfSa7MxnnBAlIaUUpRoFU0ZAWgWR0CV4XgUlAu7dX2UKGgGaAloD0MIUu3T8RiOckCUhpRSlGgVTSIBaBZHQJXhzvUjLSx1fZQoaAZoCWgPQwhVh9wMd5BwQJSGlFKUaBVNNAFoFkdAleNhF3IMjXV9lChoBmgJaA9DCBUfn5BdKnJAlIaUUpRoFU0nAWgWR0CV471b7j1gdX2UKGgGaAloD0MIOMDMdzBxcUCUhpRSlGgVTSEBaBZHQJXk2XeFcpt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e3c9e7f2440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e3c9e7f24d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e3c9e7f2560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e3c9e7f25f0>", "_build": "<function ActorCriticPolicy._build at 0x7e3c9e7f2680>", "forward": "<function ActorCriticPolicy.forward at 0x7e3c9e7f2710>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e3c9e7f27a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e3c9e7f2830>", "_predict": "<function ActorCriticPolicy._predict at 0x7e3c9e7f28c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e3c9e7f2950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e3c9e7f29e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e3c9e7f2a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e3c9e800700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695576891785416929, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0yZr2PVkS6O6e7OAk2qTN82HS6OM3dtwAAgD8AAIA/zUz6uq7zjLpto1K70flrtkB7DbtqinQ6AACAPwAAgD+m8bW9KXw3un+Xl7vpAI44ZnLpunhW5TgAAAAAAACAP2ZOE7vhJKK60G9qOheJNTVcM5O5FqOGuQAAgD8AAIA/zUZ/vBT0iLqza3i6Xq2rtOFxf7o4AY85AACAPwAAgD9mkD48FIyZunC1g7srMsq1/EVdOkAdmDoAAIA/AACAP03aUr2uoYe6FQn+uq18JrZwLNM6K9kTOgAAgD8AAIA/ZoeLPOEEoboCp2G8OGICtxL3mTqaV2w2AACAPwAAgD+z3PW9e+KWuoJoXLmz0zm1y6k/OqYCgDgAAIA/AACAP5roQb0USI+6boCOOXnWjjSps8Q6eDaluAAAgD8AAIA/M5crPdOtkD51XvG9b7eTvirVLryZaro8AAAAAAAAAABzHuu9rf95P2DpkLxhjp++CQUZvqWcaj0AAAAAAAAAAJMTMz6S+nc/W7wcPh6Oor4rViA+hvUXvQAAAAAAAAAATadAvfpn1D4jy649tLNbvpwZRj2Kbbu8AAAAAAAAAABmhhY9j35AuqKBzDqxHqs1rouWOhOs8bkAAIA/AACAP5p3n7wfVeS5tMXGOpp5GDRktCQ7fb3ruQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRK/ZElVtKMAWyUTegDjAF0lEdAlJY7W3BpH3V9lChoBkdAYPumLtNSImgHTegDaAhHQJSY8++ueSV1fZQoaAZHQGQmP6KtPpJoB03oA2gIR0CUm3Aq/dqMdX2UKGgGR0BlIT6P8yeqaAdN6ANoCEdAlJylBUrCnHV9lChoBkdAZ1jEMspXqGgHTegDaAhHQJSc0PGyX2N1fZQoaAZHQGXXGdqcmShoB03oA2gIR0CUn669CeEqdX2UKGgGR0BnmwJ3PiT/aAdN6ANoCEdAlKRBbfP5YnV9lChoBkdAZsMki2UjcGgHTegDaAhHQJSvuoYNy5t1fZQoaAZHQGBposiB5HFoB03oA2gIR0CUslfR/mT1dX2UKGgGR0BjTwIjW07baAdN6ANoCEdAlMCnQla8pXV9lChoBkdAZ5nV1fVqe2gHTegDaAhHQJTEFpJwsGx1fZQoaAZHQGCvCVKPGQ1oB03oA2gIR0CUzIjjJdSmdX2UKGgGR0BkIiYw7DEWaAdN6ANoCEdAlM6/dIoVmHV9lChoBkdAXjPPa+N96WgHTegDaAhHQJTj10p3HJd1fZQoaAZHQGhjbEHdGiJoB03oA2gIR0CU5ia3qiXZdX2UKGgGR0BmOv8n/kvLaAdN6ANoCEdAlOb36AOJ+HV9lChoBkdAYo4FKTSssGgHTegDaAhHQJT1BYmsvIx1fZQoaAZHQGGJDkU9IPNoB03oA2gIR0CU+I9rXUYsdX2UKGgGR0BhuN/e+Eh8aAdN6ANoCEdAlPrtzjm0V3V9lChoBkdAX31UKiO/+WgHTegDaAhHQJT8KRHPNV11fZQoaAZHQGN0nNPgvUVoB03oA2gIR0CU/FafjCHidX2UKGgGR0BkvSkRBeHBaAdN6ANoCEdAlP8BWHUMHHV9lChoBkdAYwIVj7Q9imgHTegDaAhHQJUDfyauwHJ1fZQoaAZHQFA1nzQNTcZoB0vaaAhHQJUE/zMA3kx1fZQoaAZHQGP6IxpL26FoB03oA2gIR0CVDEK+i8FqdX2UKGgGR0BkDazPa+N+aAdN6ANoCEdAlQ3sLncL0HV9lChoBkdAZIwTOgQHzGgHTegDaAhHQJUX379AHFB1fZQoaAZHQGaNl3yI55toB03oA2gIR0CVGwq59Vm0dX2UKGgGR0Bkfq83++/QaAdN6ANoCEdAlSTsLF4s3HV9lChoBkdAYJ1Q9A5aNmgHTegDaAhHQJUn2hdt2s91fZQoaAZHQGdMyeAd4mloB03oA2gIR0CVQgQE6kqMdX2UKGgGR0Bhpnjfek57aAdN6ANoCEdAlUOp/oaDPHV9lChoBkdAZ9+N3GGVRmgHTegDaAhHQJVEN4IKMNt1fZQoaAZHQGLFU7jkuHxoB03oA2gIR0CVTeAPNFBqdX2UKGgGR0BlDlLJ0W/KaAdN6ANoCEdAlVNSoKlYU3V9lChoBkdAYbUOJcgQpWgHTegDaAhHQJVUmUpuuRt1fZQoaAZHQGJlRvm5lOJoB03oA2gIR0CVVMg7YChfdX2UKGgGR0Bke9kjHGS7aAdN6ANoCEdAlVfFMdtEX3V9lChoBkdAZ2z1HOKO1mgHTegDaAhHQJVcsyfthNN1fZQoaAZHQGQefsNUfgdoB03oA2gIR0CVXkeNDMNddX2UKGgGR0BilZ8KG+K1aAdN6ANoCEdAlWc4FaB7NXV9lChoBkdAZH+UeMhoumgHTegDaAhHQJVpqrCFbml1fZQoaAZHQGbg8580DU5oB03oA2gIR0CVdaQzUI9ldX2UKGgGR0BhCtORDCxeaAdN6ANoCEdAlXiMiGFi8XV9lChoBkdAYQpjGT9sJ2gHTegDaAhHQJV/1SKm8/V1fZQoaAZHQGJEAf2bobJoB03oA2gIR0CVgZlLvkR0dX2UKGgGR0BhKKkqMFUyaAdN6ANoCEdAlYVbftQbdnV9lChoBkdAZXVBZZB9kWgHTegDaAhHQJWW23QUpNN1fZQoaAZHQGbepLmITGpoB03oA2gIR0CVl1Yj0L+hdX2UKGgGR0BmlXl8w5/9aAdN6ANoCEdAlaGfrWy1NXV9lChoBkdAZe9WHUMG5mgHTegDaAhHQJWpHVRUFSt1fZQoaAZHQGjGRAKOT7loB03oA2gIR0CVqujGkvbodX2UKGgGR0BhdFWhh6SlaAdN6ANoCEdAlaswH7gsLHV9lChoBkdAYU2LsKLKm2gHTegDaAhHQJWvaVyFPBV1fZQoaAZHQGNfOZssQNFoB03oA2gIR0CVtLhIOH32dX2UKGgGR0BiP4S6DoQnaAdN6ANoCEdAlbYk3XI2fnV9lChoBkdAZ5pwkPczqWgHTegDaAhHQJW9DeWOZLJ1fZQoaAZHQGdZaQmu1WtoB03oA2gIR0CVvqD0Dlo2dX2UKGgGR0BiVIBkqc3EaAdN6ANoCEdAlcgsdkrf+HV9lChoBkdAaO8igTRIBmgHTegDaAhHQJXLEO3DvVp1fZQoaAZHQF2WHZ9NN8FoB03oA2gIR0CV0kRradtmdX2UKGgGR0Bwny925hBraAdN9QFoCEdAldPAQ176YXV9lChoBkdAY3KWRA8jiWgHTegDaAhHQJXUAcABDG91fZQoaAZHQGR3uGKyfL9oB03oA2gIR0CV143nZCfIdX2UKGgGR0Bgxa/qPfbcaAdN6ANoCEdAldjhxtHhCXV9lChoBkdAYQwcd5prUWgHTegDaAhHQJXZnCiyprF1fZQoaAZHP9mSDAaef7JoB0v2aAhHQJX25h/iHZd1fZQoaAZHQGKlKe9SMtNoB03oA2gIR0CV976NEPUbdX2UKGgGR0BlGDADaGpNaAdN6ANoCEdAlfwCv1UVBXV9lChoBkdAZIv8twrDqGgHTegDaAhHQJX9GWkadc11fZQoaAZHQGUgnVoYekpoB03oA2gIR0CV/UJrtVrAdX2UKGgGR0Bg6imsNlRQaAdN6ANoCEdAlf/BvitJWnV9lChoBkdAZvPjCpFTemgHTegDaAhHQJYFjeEZiux1fZQoaAZHQGTzkLQXyiFoB03oA2gIR0CWDElZowmFdX2UKGgGR0BnI331zySWaAdN6ANoCEdAlg3krGza9XV9lChoBkdANHGcJ+lTFWgHS/FoCEdAlhRTB2wFDHV9lChoBkdAZVFSDRMN+mgHTegDaAhHQJYYEmPYFq11fZQoaAZHQGLSiPhhpg1oB03oA2gIR0CWG/GGVRk3dX2UKGgGR0BxvWUNayKOaAdNFAJoCEdAlh2esgdOqXV9lChoBkdAYGKhEjPfK2gHTegDaAhHQJYln2TPjXF1fZQoaAZHQGYrOSGJvYRoB03oA2gIR0CWKE5RCQcQdX2UKGgGR0Bk2vVVghKUaAdN6ANoCEdAli0yauwHJXV9lChoBkdAaGqTINmUW2gHTegDaAhHQJYuk+IMz/J1fZQoaAZHQGc/r2HtWuJoB03oA2gIR0CWLw+PBBRidX2UKGgGR0BfqS8FpwjuaAdN6ANoCEdAlkaI8EFGG3V9lChoBkdAZ/AOc2BJ7WgHTegDaAhHQJZHiLS/j811fZQoaAZHQCZSqIacZtNoB0viaAhHQJZJfP+n62x1fZQoaAZHQGEq9ETg2qFoB03oA2gIR0CWTUxgiNbUdX2UKGgGR0BnwTdvbXYlaAdN6ANoCEdAlk10zTF2m3V9lChoBkdAYwQVpsXSB2gHTegDaAhHQJZQB5+pfhN1fZQoaAZHQGUHn6VMVUNoB03oA2gIR0CWYLkHUtqYdX2UKGgGR0Bef80tRNypaAdN6ANoCEdAlmMnnIQvpXV9lChoBkdAZu1UkOZssWgHTegDaAhHQJZqtlsguAZ1fZQoaAZHQGQvCk43m3hoB03oA2gIR0CWbZmA9V3mdX2UKGgGR0BeThLkCFK1aAdN6ANoCEdAlnAU7fYSQHV9lChoBkdAYqYee4Cp32gHTegDaAhHQJZxMawUxmF1fZQoaAZHQF72B7NSqERoB03oA2gIR0CWdmrwvxpddX2UKGgGR0Bngw0j1PFeaAdN6ANoCEdAlngY/Z/Tb3V9lChoBkdAZPytWdVebGgHTegDaAhHQJZ9KmQ8wHt1fZQoaAZHQGO9qoZQ53loB03oA2gIR0CWfbF36hxpdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-sb3-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2b373f0b07ca7f189236ece7bc659cc6869ef4b64b71163aeeb92c8f309a32e
3
+ size 146751
ppo-sb3-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-sb3-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e3c9e7f2440>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e3c9e7f24d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e3c9e7f2560>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e3c9e7f25f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e3c9e7f2680>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e3c9e7f2710>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e3c9e7f27a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e3c9e7f2830>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e3c9e7f28c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e3c9e7f2950>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e3c9e7f29e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e3c9e7f2a70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e3c9e800700>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1695576891785416929,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0yZr2PVkS6O6e7OAk2qTN82HS6OM3dtwAAgD8AAIA/zUz6uq7zjLpto1K70flrtkB7DbtqinQ6AACAPwAAgD+m8bW9KXw3un+Xl7vpAI44ZnLpunhW5TgAAAAAAACAP2ZOE7vhJKK60G9qOheJNTVcM5O5FqOGuQAAgD8AAIA/zUZ/vBT0iLqza3i6Xq2rtOFxf7o4AY85AACAPwAAgD9mkD48FIyZunC1g7srMsq1/EVdOkAdmDoAAIA/AACAP03aUr2uoYe6FQn+uq18JrZwLNM6K9kTOgAAgD8AAIA/ZoeLPOEEoboCp2G8OGICtxL3mTqaV2w2AACAPwAAgD+z3PW9e+KWuoJoXLmz0zm1y6k/OqYCgDgAAIA/AACAP5roQb0USI+6boCOOXnWjjSps8Q6eDaluAAAgD8AAIA/M5crPdOtkD51XvG9b7eTvirVLryZaro8AAAAAAAAAABzHuu9rf95P2DpkLxhjp++CQUZvqWcaj0AAAAAAAAAAJMTMz6S+nc/W7wcPh6Oor4rViA+hvUXvQAAAAAAAAAATadAvfpn1D4jy649tLNbvpwZRj2Kbbu8AAAAAAAAAABmhhY9j35AuqKBzDqxHqs1rouWOhOs8bkAAIA/AACAP5p3n7wfVeS5tMXGOpp5GDRktCQ7fb3ruQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRK/ZElVtKMAWyUTegDjAF0lEdAlJY7W3BpH3V9lChoBkdAYPumLtNSImgHTegDaAhHQJSY8++ueSV1fZQoaAZHQGQmP6KtPpJoB03oA2gIR0CUm3Aq/dqMdX2UKGgGR0BlIT6P8yeqaAdN6ANoCEdAlJylBUrCnHV9lChoBkdAZ1jEMspXqGgHTegDaAhHQJSc0PGyX2N1fZQoaAZHQGXXGdqcmShoB03oA2gIR0CUn669CeEqdX2UKGgGR0BnmwJ3PiT/aAdN6ANoCEdAlKRBbfP5YnV9lChoBkdAZsMki2UjcGgHTegDaAhHQJSvuoYNy5t1fZQoaAZHQGBposiB5HFoB03oA2gIR0CUslfR/mT1dX2UKGgGR0BjTwIjW07baAdN6ANoCEdAlMCnQla8pXV9lChoBkdAZ5nV1fVqe2gHTegDaAhHQJTEFpJwsGx1fZQoaAZHQGCvCVKPGQ1oB03oA2gIR0CUzIjjJdSmdX2UKGgGR0BkIiYw7DEWaAdN6ANoCEdAlM6/dIoVmHV9lChoBkdAXjPPa+N96WgHTegDaAhHQJTj10p3HJd1fZQoaAZHQGhjbEHdGiJoB03oA2gIR0CU5ia3qiXZdX2UKGgGR0BmOv8n/kvLaAdN6ANoCEdAlOb36AOJ+HV9lChoBkdAYo4FKTSssGgHTegDaAhHQJT1BYmsvIx1fZQoaAZHQGGJDkU9IPNoB03oA2gIR0CU+I9rXUYsdX2UKGgGR0BhuN/e+Eh8aAdN6ANoCEdAlPrtzjm0V3V9lChoBkdAX31UKiO/+WgHTegDaAhHQJT8KRHPNV11fZQoaAZHQGN0nNPgvUVoB03oA2gIR0CU/FafjCHidX2UKGgGR0BkvSkRBeHBaAdN6ANoCEdAlP8BWHUMHHV9lChoBkdAYwIVj7Q9imgHTegDaAhHQJUDfyauwHJ1fZQoaAZHQFA1nzQNTcZoB0vaaAhHQJUE/zMA3kx1fZQoaAZHQGP6IxpL26FoB03oA2gIR0CVDEK+i8FqdX2UKGgGR0BkDazPa+N+aAdN6ANoCEdAlQ3sLncL0HV9lChoBkdAZIwTOgQHzGgHTegDaAhHQJUX379AHFB1fZQoaAZHQGaNl3yI55toB03oA2gIR0CVGwq59Vm0dX2UKGgGR0Bkfq83++/QaAdN6ANoCEdAlSTsLF4s3HV9lChoBkdAYJ1Q9A5aNmgHTegDaAhHQJUn2hdt2s91fZQoaAZHQGdMyeAd4mloB03oA2gIR0CVQgQE6kqMdX2UKGgGR0Bhpnjfek57aAdN6ANoCEdAlUOp/oaDPHV9lChoBkdAZ9+N3GGVRmgHTegDaAhHQJVEN4IKMNt1fZQoaAZHQGLFU7jkuHxoB03oA2gIR0CVTeAPNFBqdX2UKGgGR0BlDlLJ0W/KaAdN6ANoCEdAlVNSoKlYU3V9lChoBkdAYbUOJcgQpWgHTegDaAhHQJVUmUpuuRt1fZQoaAZHQGJlRvm5lOJoB03oA2gIR0CVVMg7YChfdX2UKGgGR0Bke9kjHGS7aAdN6ANoCEdAlVfFMdtEX3V9lChoBkdAZ2z1HOKO1mgHTegDaAhHQJVcsyfthNN1fZQoaAZHQGQefsNUfgdoB03oA2gIR0CVXkeNDMNddX2UKGgGR0BilZ8KG+K1aAdN6ANoCEdAlWc4FaB7NXV9lChoBkdAZH+UeMhoumgHTegDaAhHQJVpqrCFbml1fZQoaAZHQGbg8580DU5oB03oA2gIR0CVdaQzUI9ldX2UKGgGR0BhCtORDCxeaAdN6ANoCEdAlXiMiGFi8XV9lChoBkdAYQpjGT9sJ2gHTegDaAhHQJV/1SKm8/V1fZQoaAZHQGJEAf2bobJoB03oA2gIR0CVgZlLvkR0dX2UKGgGR0BhKKkqMFUyaAdN6ANoCEdAlYVbftQbdnV9lChoBkdAZXVBZZB9kWgHTegDaAhHQJWW23QUpNN1fZQoaAZHQGbepLmITGpoB03oA2gIR0CVl1Yj0L+hdX2UKGgGR0BmlXl8w5/9aAdN6ANoCEdAlaGfrWy1NXV9lChoBkdAZe9WHUMG5mgHTegDaAhHQJWpHVRUFSt1fZQoaAZHQGjGRAKOT7loB03oA2gIR0CVqujGkvbodX2UKGgGR0BhdFWhh6SlaAdN6ANoCEdAlaswH7gsLHV9lChoBkdAYU2LsKLKm2gHTegDaAhHQJWvaVyFPBV1fZQoaAZHQGNfOZssQNFoB03oA2gIR0CVtLhIOH32dX2UKGgGR0BiP4S6DoQnaAdN6ANoCEdAlbYk3XI2fnV9lChoBkdAZ5pwkPczqWgHTegDaAhHQJW9DeWOZLJ1fZQoaAZHQGdZaQmu1WtoB03oA2gIR0CVvqD0Dlo2dX2UKGgGR0BiVIBkqc3EaAdN6ANoCEdAlcgsdkrf+HV9lChoBkdAaO8igTRIBmgHTegDaAhHQJXLEO3DvVp1fZQoaAZHQF2WHZ9NN8FoB03oA2gIR0CV0kRradtmdX2UKGgGR0Bwny925hBraAdN9QFoCEdAldPAQ176YXV9lChoBkdAY3KWRA8jiWgHTegDaAhHQJXUAcABDG91fZQoaAZHQGR3uGKyfL9oB03oA2gIR0CV143nZCfIdX2UKGgGR0Bgxa/qPfbcaAdN6ANoCEdAldjhxtHhCXV9lChoBkdAYQwcd5prUWgHTegDaAhHQJXZnCiyprF1fZQoaAZHP9mSDAaef7JoB0v2aAhHQJX25h/iHZd1fZQoaAZHQGKlKe9SMtNoB03oA2gIR0CV976NEPUbdX2UKGgGR0BlGDADaGpNaAdN6ANoCEdAlfwCv1UVBXV9lChoBkdAZIv8twrDqGgHTegDaAhHQJX9GWkadc11fZQoaAZHQGUgnVoYekpoB03oA2gIR0CV/UJrtVrAdX2UKGgGR0Bg6imsNlRQaAdN6ANoCEdAlf/BvitJWnV9lChoBkdAZvPjCpFTemgHTegDaAhHQJYFjeEZiux1fZQoaAZHQGTzkLQXyiFoB03oA2gIR0CWDElZowmFdX2UKGgGR0BnI331zySWaAdN6ANoCEdAlg3krGza9XV9lChoBkdANHGcJ+lTFWgHS/FoCEdAlhRTB2wFDHV9lChoBkdAZVFSDRMN+mgHTegDaAhHQJYYEmPYFq11fZQoaAZHQGLSiPhhpg1oB03oA2gIR0CWG/GGVRk3dX2UKGgGR0BxvWUNayKOaAdNFAJoCEdAlh2esgdOqXV9lChoBkdAYGKhEjPfK2gHTegDaAhHQJYln2TPjXF1fZQoaAZHQGYrOSGJvYRoB03oA2gIR0CWKE5RCQcQdX2UKGgGR0Bk2vVVghKUaAdN6ANoCEdAli0yauwHJXV9lChoBkdAaGqTINmUW2gHTegDaAhHQJYuk+IMz/J1fZQoaAZHQGc/r2HtWuJoB03oA2gIR0CWLw+PBBRidX2UKGgGR0BfqS8FpwjuaAdN6ANoCEdAlkaI8EFGG3V9lChoBkdAZ/AOc2BJ7WgHTegDaAhHQJZHiLS/j811fZQoaAZHQCZSqIacZtNoB0viaAhHQJZJfP+n62x1fZQoaAZHQGEq9ETg2qFoB03oA2gIR0CWTUxgiNbUdX2UKGgGR0BnwTdvbXYlaAdN6ANoCEdAlk10zTF2m3V9lChoBkdAYwQVpsXSB2gHTegDaAhHQJZQB5+pfhN1fZQoaAZHQGUHn6VMVUNoB03oA2gIR0CWYLkHUtqYdX2UKGgGR0Bef80tRNypaAdN6ANoCEdAlmMnnIQvpXV9lChoBkdAZu1UkOZssWgHTegDaAhHQJZqtlsguAZ1fZQoaAZHQGQvCk43m3hoB03oA2gIR0CWbZmA9V3mdX2UKGgGR0BeThLkCFK1aAdN6ANoCEdAlnAU7fYSQHV9lChoBkdAYqYee4Cp32gHTegDaAhHQJZxMawUxmF1fZQoaAZHQF72B7NSqERoB03oA2gIR0CWdmrwvxpddX2UKGgGR0Bngw0j1PFeaAdN6ANoCEdAlngY/Z/Tb3V9lChoBkdAZPytWdVebGgHTegDaAhHQJZ9KmQ8wHt1fZQoaAZHQGO9qoZQ53loB03oA2gIR0CWfbF36hxpdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-sb3-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7e246ffd21fa48f30ace4d173b9098db3bbb01e9652951b084efc1f713b83fd
3
+ size 87929
ppo-sb3-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e50162adacc0bd76ffe1495f14d6fc0bb471e9f6330abad57efc531f5c3e479
3
+ size 43329
ppo-sb3-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-sb3-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"env_id": "LunarLander-v2", "mean_reward": -144.15381929499148, "std_reward": 74.56520814958145, "n_evaluation_episodes": 10, "eval_datetime": "2023-09-24T16:33:25.309475"}
 
1
+ {"mean_reward": 270.3727971, "std_reward": 16.262284877985444, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-24T18:08:29.612290"}