BT5153-kaggle-sentiment-model-3000-samples

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6160
  • Accuracy: 0.9270
  • F1: 0.9288

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.2851 1.0 625 0.2058 0.9216 0.9231
0.1735 2.0 1250 0.2257 0.9244 0.9258
0.121 3.0 1875 0.2907 0.9232 0.9251
0.0525 4.0 2500 0.3607 0.9194 0.9219
0.0381 5.0 3125 0.4109 0.9216 0.9233
0.0257 6.0 3750 0.4142 0.9232 0.9244
0.0192 7.0 4375 0.4321 0.9230 0.9233
0.0126 8.0 5000 0.4745 0.9250 0.9278
0.01 9.0 5625 0.5053 0.9240 0.9246
0.0091 10.0 6250 0.5256 0.9240 0.9267
0.0062 11.0 6875 0.5798 0.9246 0.9255
0.0033 12.0 7500 0.5935 0.9242 0.9262
0.0019 13.0 8125 0.5891 0.9286 0.9303
0.0018 14.0 8750 0.6176 0.9266 0.9287
0.0001 15.0 9375 0.6160 0.9270 0.9288

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.0
  • Datasets 2.1.0
  • Tokenizers 0.13.2
Downloads last month
6
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.