metadata
library_name: transformers
license: mit
base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: Bert-Contact-NLI
results: []
Bert-Contact-NLI
This model is a fine-tuned version of MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8424
- Model Preparation Time: 0.0068
- Accuracy: 0.6173
- Precision: 0.6539
- Recall: 0.5487
- F1: 0.5668
- Ratio: 0.4136
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Accuracy | Precision | Recall | F1 | Ratio |
---|---|---|---|---|---|---|---|---|---|
No log | 0.9895 | 47 | 0.8424 | 0.0068 | 0.6173 | 0.6539 | 0.5487 | 0.5668 | 0.4136 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3