osiria's picture
Update README.md
a13db21
---
license: apache-2.0
language:
- it
---
--------------------------------------------------------------------------------------------------
<body>
<span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;"> </span>
<br>
<span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;">  </span>
<br>
<span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;">    Model: DistilBERT</span>
<br>
<span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;">    Lang: IT</span>
<br>
<span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;">  </span>
<br>
<span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;"> </span>
</body>
--------------------------------------------------------------------------------------------------
<h3>Model description</h3>
This is a <b>DistilBERT</b> <b>[1]</b> model for the <b>Italian</b> language, obtained using the multilingual <b>DistilBERT</b> ([distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased)) as a starting point and focusing it on the Italian language by modifying the embedding layer
(as in <b>[2]</b>, computing document-level frequencies over the <b>Wikipedia</b> dataset)
The resulting model has 67M parameters, a vocabulary of 30.785 tokens, and a size of ~270 MB.
<h3>Quick usage</h3>
```python
from transformers import BertTokenizerFast, DistilBertModel
tokenizer = DistilBertTokenizerFast.from_pretrained("osiria/distilbert-base-italian-cased")
model = DistilBertModel.from_pretrained("osiria/distilbert-base-italian-cased")
```
<h3>References</h3>
[1] https://arxiv.org/abs/1910.01108
[2] https://arxiv.org/abs/2010.05609
<h3>License</h3>
The model is released under <b>Apache-2.0</b> license