|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import ClapTextModelWithProjection, RobertaTokenizer, RobertaTokenizerFast, SpeechT5HifiGan |
|
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import is_accelerate_available, logging, randn_tensor, replace_example_docstring |
|
from diffusers.pipelines.pipeline_utils import AudioPipelineOutput, DiffusionPipeline |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import AudioLDMPipeline |
|
|
|
>>> pipe = AudioLDMPipeline.from_pretrained("cvssp/audioldm", torch_dtype=torch.float16) |
|
>>> pipe = pipe.to("cuda") |
|
|
|
>>> prompt = "A hammer hitting a wooden surface" |
|
>>> audio = pipe(prompt).audio[0] |
|
``` |
|
""" |
|
|
|
|
|
class AudioLDMPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for text-to-audio generation using AudioLDM. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode audios to and from latent representations. |
|
text_encoder ([`ClapTextModelWithProjection`]): |
|
Frozen text-encoder. AudioLDM uses the text portion of |
|
[CLAP](https://huggingface.co/docs/transformers/main/model_doc/clap#transformers.ClapTextModelWithProjection), |
|
specifically the [RoBERTa HSTAT-unfused](https://huggingface.co/laion/clap-htsat-unfused) variant. |
|
tokenizer ([`PreTrainedTokenizer`]): |
|
Tokenizer of class |
|
[RobertaTokenizer](https://huggingface.co/docs/transformers/model_doc/roberta#transformers.RobertaTokenizer). |
|
unet ([`UNet2DConditionModel`]): U-Net architecture to denoise the encoded audio latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
vocoder ([`SpeechT5HifiGan`]): |
|
Vocoder of class |
|
[SpeechT5HifiGan](https://huggingface.co/docs/transformers/main/en/model_doc/speecht5#transformers.SpeechT5HifiGan). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: ClapTextModelWithProjection, |
|
tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast], |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
vocoder: SpeechT5HifiGan, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
vocoder=vocoder, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
|
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. |
|
|
|
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several |
|
steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, |
|
text_encoder, vae and vocoder have their state dicts saved to CPU and then are moved to a `torch.device('meta') |
|
and loaded to GPU only when their specific submodule has its `forward` method called. |
|
""" |
|
if is_accelerate_available(): |
|
from accelerate import cpu_offload |
|
else: |
|
raise ImportError("Please install accelerate via `pip install accelerate`") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.vocoder]: |
|
cpu_offload(cpu_offloaded_model, device) |
|
|
|
@property |
|
|
|
def _execution_device(self): |
|
r""" |
|
Returns the device on which the pipeline's models will be executed. After calling |
|
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module |
|
hooks. |
|
""" |
|
if not hasattr(self.unet, "_hf_hook"): |
|
return self.device |
|
for module in self.unet.modules(): |
|
if ( |
|
hasattr(module, "_hf_hook") |
|
and hasattr(module._hf_hook, "execution_device") |
|
and module._hf_hook.execution_device is not None |
|
): |
|
return torch.device(module._hf_hook.execution_device) |
|
return self.device |
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_waveforms_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device (`torch.device`): |
|
torch device |
|
num_waveforms_per_prompt (`int`): |
|
number of waveforms that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the audio generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
""" |
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
attention_mask = text_inputs.attention_mask |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLAP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), |
|
attention_mask=attention_mask.to(device), |
|
) |
|
prompt_embeds = prompt_embeds.text_embeds |
|
|
|
prompt_embeds = F.normalize(prompt_embeds, dim=-1) |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
|
( |
|
bs_embed, |
|
seq_len, |
|
) = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
uncond_input_ids = uncond_input.input_ids.to(device) |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input_ids, |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds.text_embeds |
|
|
|
negative_prompt_embeds = F.normalize(negative_prompt_embeds, dim=-1) |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len) |
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
return prompt_embeds |
|
|
|
def decode_latents(self, latents): |
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
mel_spectrogram = self.vae.decode(latents).sample |
|
return mel_spectrogram |
|
|
|
def mel_spectrogram_to_waveform(self, mel_spectrogram): |
|
if mel_spectrogram.dim() == 4: |
|
mel_spectrogram = mel_spectrogram.squeeze(1) |
|
|
|
waveform = self.vocoder(mel_spectrogram) |
|
|
|
waveform = waveform.cpu().float() |
|
return waveform |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
audio_length_in_s, |
|
vocoder_upsample_factor, |
|
callback_steps, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
): |
|
min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor |
|
if audio_length_in_s < min_audio_length_in_s: |
|
raise ValueError( |
|
f"`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but " |
|
f"is {audio_length_in_s}." |
|
) |
|
|
|
if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0: |
|
raise ValueError( |
|
f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the " |
|
f"VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of " |
|
f"{self.vae_scale_factor}." |
|
) |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
height // self.vae_scale_factor, |
|
self.vocoder.config.model_in_dim // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
audio_length_in_s: Optional[float] = None, |
|
num_inference_steps: int = 10, |
|
guidance_scale: float = 2.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_waveforms_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
output_type: Optional[str] = "np", |
|
return_prompts_only: bool = False, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the audio generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
audio_length_in_s (`int`, *optional*, defaults to 5.12): |
|
The length of the generated audio sample in seconds. |
|
num_inference_steps (`int`, *optional*, defaults to 10): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality audio at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 2.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate audios that are closely linked to the text `prompt`, |
|
usually at the expense of lower sound quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the audio generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
num_waveforms_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of waveforms to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for audio |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under |
|
`self.processors` in |
|
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). |
|
output_type (`str`, *optional*, defaults to `"np"`): |
|
The output format of the generate image. Choose between: |
|
- `"np"`: Return Numpy `np.ndarray` objects. |
|
- `"pt"`: Return PyTorch `torch.Tensor` objects. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated audios. |
|
""" |
|
|
|
vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate |
|
|
|
if audio_length_in_s is None: |
|
audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor |
|
|
|
height = int(audio_length_in_s / vocoder_upsample_factor) |
|
|
|
original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate) |
|
if height % self.vae_scale_factor != 0: |
|
height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor |
|
logger.info( |
|
f"Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} " |
|
f"so that it can be handled by the model. It will be cut to {audio_length_in_s} after the " |
|
f"denoising process." |
|
) |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
audio_length_in_s, |
|
vocoder_upsample_factor, |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
if return_prompts_only: |
|
|
|
do_classifier_free_guidance = False |
|
|
|
|
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
device, |
|
num_waveforms_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
) |
|
if return_prompts_only: |
|
return prompt_embeds |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_waveforms_per_prompt, |
|
num_channels_latents, |
|
height, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=None, |
|
class_labels=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
|
|
mel_spectrogram = self.decode_latents(latents) |
|
|
|
audio = self.mel_spectrogram_to_waveform(mel_spectrogram) |
|
|
|
audio = audio[:, :original_waveform_length] |
|
|
|
if output_type == "np": |
|
audio = audio.numpy() |
|
|
|
if not return_dict: |
|
return (audio,) |
|
|
|
return AudioPipelineOutput(audios=audio) |