osamaifti's picture
Upload 83 files
7cdf421 verified
raw
history blame
16.4 kB
import random
import torch
from torch.nn.utils import rnn
import io
import json
import logging
import os
import pickle
import re
import shutil
import urllib
import urllib.error
import urllib.request
from typing import Optional
from urllib.parse import urlparse
def truncate_caption(caption: str) -> str:
"""Truncate captions at periods and newlines."""
caption = caption.strip('\n')
trunc_index = caption.find('\n') + 1
if trunc_index <= 0:
trunc_index = caption.find('.') + 1
if trunc_index > 0:
caption = caption[:trunc_index]
return caption
def build_one_instance_for_pgpt4(tokenizer, conversation):
text_list = []
turn_num = len(conversation)
input_ids, target_ids = [], []
for i in range(turn_num):
turn = conversation[i]
role = turn['from']
if i == 0: # the first human turn
assert role == 'human'
text = '### Human: </Img> ' + turn['value'] + '\n### Assistant: '
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += [-100] * len(one_input_id) # do not perform loss regression on human prompt
else:
if role == 'human':
text = 'Human: ' + turn['value'] + '\n### Assistant: '
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += [-100] * len(one_input_id)
elif role == 'gpt':
text = turn['value'] + '\n###'
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += one_input_id
else:
raise Exception('Wrong Role!!!')
text_list.append(text)
assert len(input_ids) == len(target_ids)
return text_list, input_ids, target_ids
def build_one_instance_for_cc3m(tokenizer, conversation):
text_list = []
input_ids, target_ids = [], []
turn_num = len(conversation)
for i in range(turn_num):
turn = conversation[i]
role = turn['from']
if i == 0: # the first human turn
assert role == 'human'
text = '### Human: ' + turn['value'] + '\n### Assistant: '
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += [-100] * len(one_input_id) # do not perform loss regression on human prompt
else:
if role == 'human':
text = 'Human: ' + turn['value'] + '\n### Assistant: '
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += [-100] * len(one_input_id)
elif role == 'gpt':
if 'image_name' in turn.keys():
img_tokens = ' '.join([f'[IMG{i}]' for i in range(8)])
text = turn['value'] + ' ' + img_tokens + '\n###'
else:
text = turn['value'] + '\n###'
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += one_input_id
# if 'image_name' in turn.keys():
# img_tokens = ' '.join([f'[IMG{i}]' for i in range(8)])
# img_input_ids = tokenizer(img_tokens, add_special_tokens=False).input_ids
# input_ids += img_input_ids
# target_ids += img_input_ids
else:
raise Exception('Wrong Role!!!')
text_list.append(text)
assert len(input_ids) == len(target_ids)
return text_list, input_ids, target_ids
def build_one_instance_for_cc3m_1(tokenizer, conversation, num_img_tokens=8):
text_list = []
input_ids, target_ids = [], []
turn_num = len(conversation)
for i in range(turn_num):
turn = conversation[i]
role = turn['from']
if i == 0: # the first human turn
assert role == 'human'
text = turn['value'] + '\n### Assistant: '
# text = turn['value']
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += one_input_id # do not perform loss regression on human prompt
else:
if role == 'human':
text = turn['value']
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += one_input_id
elif role == 'gpt':
# if 'image_name' in turn.keys():
# img_tokens = ' '.join([f'[IMG{i}]' for i in range(num_img_tokens)])
# text = turn['value'] + img_tokens
# else:
# text = turn['value']
text = ' '.join([f'[IMG{i}]' for i in range(num_img_tokens)])
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += one_input_id
# if 'image_name' in turn.keys():
# img_tokens = ' '.join([f'[IMG{i}]' for i in range(8)])
# img_input_ids = tokenizer(img_tokens, add_special_tokens=False).input_ids
# input_ids += img_input_ids
# target_ids += img_input_ids
else:
raise Exception('Wrong Role!!!')
text_list.append(text)
assert len(input_ids) == len(target_ids)
return text_list, input_ids, target_ids
def build_one_instance_for_webvid(tokenizer, conversation, num_video_tokens=8):
text_list = []
input_ids, target_ids = [], []
# text = '### Human: ' + conversation + '\n### Assistant: '
# one_input_id = tokenizer(text, add_special_tokens=False).input_ids
# input_ids += one_input_id
# target_ids += one_input_id # do not perform loss regression on human prompt
video_tokens = ' '.join([f'[VID{i}]' for i in range(num_video_tokens)])
text = conversation + video_tokens
text_list.append(text)
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += one_input_id
assert len(input_ids) == len(target_ids)
return text_list, input_ids, target_ids
def process_batch_instance(tokenizer, batch_of_conversations, max_tgt_len, dataset='cc3m',
num_img_tokens=8, num_video_tokens=8):
batch_input_ids, batch_target_ids = [], []
for conversation in batch_of_conversations:
if dataset == "pgpt4":
_, one_input_ids, one_target_ids = build_one_instance_for_pgpt4(tokenizer, conversation)
elif dataset == 'cc3m' or dataset == 'coco2017':
_, one_input_ids, one_target_ids = build_one_instance_for_cc3m_1(tokenizer, conversation, num_img_tokens)
elif dataset == 'webvid':
_, one_input_ids, one_target_ids = build_one_instance_for_webvid(tokenizer, conversation, num_video_tokens)
else:
raise Exception("not support dataset name, it should be pgpt4 or cc3m")
batch_input_ids.append(torch.LongTensor(one_input_ids))
batch_target_ids.append(torch.LongTensor(one_target_ids))
input_ids = rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
target_ids = rnn.pad_sequence(batch_target_ids, batch_first=True, padding_value=-100)
assert input_ids.size() == target_ids.size()
input_ids = input_ids[:, :max_tgt_len]
target_ids = target_ids[:, :max_tgt_len]
attention_mask = input_ids.ne(tokenizer.pad_token_id)
assert attention_mask.size() == input_ids.size()
return input_ids, target_ids, attention_mask.long()
def mask_token(inputs, tokenizer, mlm_probability, vocab_size=None, special_tokens_mask=None):
"""
randomly mask some input tokens
"""
indices_replaced = torch.bernoulli(torch.full(inputs.shape, mlm_probability)).bool()
inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
return inputs
def build_one_instance_stage_1(tokenizer, captions, prompt=''):
input_ids, target_ids = [], []
texts = ''
text = '</Img> ' + prompt + '\n### Assistant: '
texts += text
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += [-100] * len(one_input_id) # do not perform loss regression on human prompt
text = captions + '\n###'
texts += text
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += one_input_id
return input_ids, target_ids
def process_batch_stage_1(tokenizer, batch_of_captions, max_tgt_len, prompt=''):
batch_input_ids, batch_target_ids = [], []
for caption in batch_of_captions:
one_input_ids, one_target_ids = build_one_instance_stage_1(tokenizer, caption, prompt)
batch_input_ids.append(torch.LongTensor(one_input_ids))
batch_target_ids.append(torch.LongTensor(one_target_ids))
input_ids = rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
target_ids = rnn.pad_sequence(batch_target_ids, batch_first=True, padding_value=-100)
assert input_ids.size() == target_ids.size()
input_ids = input_ids[:, :max_tgt_len]
target_ids = target_ids[:, :max_tgt_len]
attention_mask = input_ids.ne(tokenizer.pad_token_id)
assert attention_mask.size() == input_ids.size()
return input_ids, target_ids, attention_mask.long()
def build_one_instance_stage_2(tokenizer, captions, num_signal_tokens=4, MODALITY='image'):
input_ids, target_ids = [], []
text = captions + '\n### Assistant: '
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += [-100] * len(one_input_id) # do not perform loss regression on human prompt
if MODALITY == 'image':
signal_tokens = ' '.join([f'[IMG{i}]' for i in range(num_signal_tokens)])
elif MODALITY == 'video':
signal_tokens = ' '.join([f'[VID{i}]' for i in range(num_signal_tokens)])
elif MODALITY == 'audio':
signal_tokens = ' '.join([f'[AUD{i}]' for i in range(num_signal_tokens)])
else:
signal_tokens = ''
text = captions + signal_tokens + '\n###'
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += one_input_id
return input_ids, target_ids
def process_batch_stage_2(tokenizer, batch_of_captions, max_tgt_len, num_signal_tokens=4, MODALITY='image'):
"""
:param mode: the target modality
:param num_tokens: the number of generated signal tokens for generation
"""
batch_input_ids, batch_target_ids = [], []
# batch_caption_lists = []
for captions in batch_of_captions:
one_input_ids, one_target_ids = build_one_instance_stage_2(tokenizer, captions,
num_signal_tokens=num_signal_tokens,
MODALITY=MODALITY)
batch_input_ids.append(torch.LongTensor(one_input_ids))
batch_target_ids.append(torch.LongTensor(one_target_ids))
# batch_caption_lists.append(caption)
input_ids = rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
target_ids = rnn.pad_sequence(batch_target_ids, batch_first=True, padding_value=-100)
assert input_ids.size() == target_ids.size()
input_ids = input_ids[:, :max_tgt_len]
target_ids = target_ids[:, :max_tgt_len]
attention_mask = input_ids.ne(tokenizer.pad_token_id)
assert attention_mask.size() == input_ids.size()
return input_ids, target_ids, attention_mask.long()
# def process_batch_stage_2(tokenizer, batch_of_captions, )
def build_one_instance_stage_3(tokenizer, conversation, img_tokens=4, vid_tokens=24, aud_tokens=8):
text_list = []
turn_num = len(conversation)
input_ids, target_ids = [], []
for i in range(turn_num):
turn = conversation[i]
role = turn['from']
if i == 0: # the first human turn
assert role == 'human'
if turn['input_modality'] != 'text':
text = '</Img> ' + turn['value'] + '\n### Assistant: '
else:
text = turn['value'] + '\n### Assistant: '
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += [-100] * len(one_input_id) # do not perform loss regression on human prompt
else:
if role == 'human':
text = 'Human: ' + turn['value'] + '\n### Assistant: '
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += [-100] * len(one_input_id)
elif role == 'gpt':
if turn['output_modality'] == 'image':
signal_tokens = ' '.join([f'[IMG{i}]' for i in range(img_tokens)])
elif turn['output_modality'] == 'video':
signal_tokens = ' '.join([f'[VID{i}]' for i in range(vid_tokens)])
elif turn['output_modality'] == 'audio':
signal_tokens = ' '.join([f'[AUD{i}]' for i in range(aud_tokens)])
else:
signal_tokens = ''
caption = turn['caption']
text = turn['value'] + signal_tokens + '\n###'
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += one_input_id
else:
raise Exception('Wrong Role!!!')
text_list.append(text)
assert len(input_ids) == len(target_ids)
return text_list, input_ids, target_ids, caption
def process_batch_stage_3(tokenizer, batch_of_conversations, max_tgt_len, img_tokens=4, vid_tokens=24, aud_tokens=8):
"""
:param mode: the target modality
:param num_tokens: the number of generated signal tokens for generation
"""
batch_input_ids, batch_target_ids = [], []
# batch_caption_lists = []
for conversation in batch_of_conversations:
_, one_input_ids, one_target_ids, caption = build_one_instance_stage_3(tokenizer, conversation,
img_tokens=img_tokens,
vid_tokens=vid_tokens,
aud_tokens=aud_tokens)
batch_input_ids.append(torch.LongTensor(one_input_ids))
batch_target_ids.append(torch.LongTensor(one_target_ids))
# batch_caption_lists.append(caption)
input_ids = rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
target_ids = rnn.pad_sequence(batch_target_ids, batch_first=True, padding_value=-100)
assert input_ids.size() == target_ids.size()
input_ids = input_ids[:, :max_tgt_len]
# if is_mask_token:
# input_ids = mask_token(input_ids, tokenizer, 0.5)
target_ids = target_ids[:, :max_tgt_len]
attention_mask = input_ids.ne(tokenizer.pad_token_id)
assert attention_mask.size() == input_ids.size()
return input_ids, target_ids, attention_mask.long()
def is_url(url_or_filename):
parsed = urlparse(url_or_filename)
return parsed.scheme in ("http", "https")
def l2_loss(u: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
"""
Args:
u: (N, T_I_V_A.txt, D) tensor.
v: (N, T_I_V_A.txt, D) tensor.
Returns:
l1_loss: (N,) tensor of summed L1 loss.
"""
assert u.shape == v.shape, (u.shape, v.shape)
return ((u - v) ** 2).sum(dim=-1) ** 0.5
def get_modality(path_list):
_postfix = os.path.splitext(path_list[0])[-1]
if _postfix == '.jpg':
return 'image'
elif _postfix == '.wav':
return 'audio'
elif _postfix == '.mp4':
return 'video'
else:
raise NotImplementedError