File size: 16,417 Bytes
7cdf421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import random

import torch
from torch.nn.utils import rnn

import io
import json
import logging
import os
import pickle
import re
import shutil
import urllib
import urllib.error
import urllib.request
from typing import Optional
from urllib.parse import urlparse


def truncate_caption(caption: str) -> str:
    """Truncate captions at periods and newlines."""
    caption = caption.strip('\n')
    trunc_index = caption.find('\n') + 1
    if trunc_index <= 0:
        trunc_index = caption.find('.') + 1
    if trunc_index > 0:
        caption = caption[:trunc_index]
    return caption


def build_one_instance_for_pgpt4(tokenizer, conversation):
    text_list = []
    turn_num = len(conversation)
    input_ids, target_ids = [], []
    for i in range(turn_num):
        turn = conversation[i]
        role = turn['from']
        if i == 0:  # the first human turn
            assert role == 'human'
            text = '### Human: </Img> ' + turn['value'] + '\n### Assistant: '
            one_input_id = tokenizer(text, add_special_tokens=False).input_ids
            input_ids += one_input_id
            target_ids += [-100] * len(one_input_id)  # do not perform loss regression on human prompt
        else:
            if role == 'human':
                text = 'Human: ' + turn['value'] + '\n### Assistant: '
                one_input_id = tokenizer(text, add_special_tokens=False).input_ids
                input_ids += one_input_id
                target_ids += [-100] * len(one_input_id)
            elif role == 'gpt':
                text = turn['value'] + '\n###'
                one_input_id = tokenizer(text, add_special_tokens=False).input_ids
                input_ids += one_input_id
                target_ids += one_input_id
            else:
                raise Exception('Wrong Role!!!')
        text_list.append(text)
        assert len(input_ids) == len(target_ids)
    return text_list, input_ids, target_ids


def build_one_instance_for_cc3m(tokenizer, conversation):
    text_list = []
    input_ids, target_ids = [], []
    turn_num = len(conversation)
    for i in range(turn_num):
        turn = conversation[i]
        role = turn['from']
        if i == 0:  # the first human turn
            assert role == 'human'
            text = '### Human: ' + turn['value'] + '\n### Assistant: '
            one_input_id = tokenizer(text, add_special_tokens=False).input_ids
            input_ids += one_input_id
            target_ids += [-100] * len(one_input_id)  # do not perform loss regression on human prompt
        else:
            if role == 'human':
                text = 'Human: ' + turn['value'] + '\n### Assistant: '
                one_input_id = tokenizer(text, add_special_tokens=False).input_ids
                input_ids += one_input_id
                target_ids += [-100] * len(one_input_id)
            elif role == 'gpt':
                if 'image_name' in turn.keys():
                    img_tokens = ' '.join([f'[IMG{i}]' for i in range(8)])
                    text = turn['value'] + ' ' + img_tokens + '\n###'
                else:
                    text = turn['value'] + '\n###'
                one_input_id = tokenizer(text, add_special_tokens=False).input_ids
                input_ids += one_input_id
                target_ids += one_input_id
                # if 'image_name' in turn.keys():
                #     img_tokens = ' '.join([f'[IMG{i}]' for i in range(8)])
                #     img_input_ids = tokenizer(img_tokens, add_special_tokens=False).input_ids
                #     input_ids += img_input_ids
                #     target_ids += img_input_ids
            else:
                raise Exception('Wrong Role!!!')
        text_list.append(text)
        assert len(input_ids) == len(target_ids)
    return text_list, input_ids, target_ids


def build_one_instance_for_cc3m_1(tokenizer, conversation, num_img_tokens=8):
    text_list = []
    input_ids, target_ids = [], []
    turn_num = len(conversation)
    for i in range(turn_num):
        turn = conversation[i]
        role = turn['from']
        if i == 0:  # the first human turn
            assert role == 'human'
            text = turn['value'] + '\n### Assistant: '
            # text = turn['value']
            one_input_id = tokenizer(text, add_special_tokens=False).input_ids
            input_ids += one_input_id
            target_ids += one_input_id  # do not perform loss regression on human prompt
        else:
            if role == 'human':
                text = turn['value']
                one_input_id = tokenizer(text, add_special_tokens=False).input_ids
                input_ids += one_input_id
                target_ids += one_input_id
            elif role == 'gpt':
                # if 'image_name' in turn.keys():
                #     img_tokens = ' '.join([f'[IMG{i}]' for i in range(num_img_tokens)])
                #     text = turn['value'] + img_tokens
                # else:
                #     text = turn['value']
                text = ' '.join([f'[IMG{i}]' for i in range(num_img_tokens)])
                one_input_id = tokenizer(text, add_special_tokens=False).input_ids
                input_ids += one_input_id
                target_ids += one_input_id
                # if 'image_name' in turn.keys():
                #     img_tokens = ' '.join([f'[IMG{i}]' for i in range(8)])
                #     img_input_ids = tokenizer(img_tokens, add_special_tokens=False).input_ids
                #     input_ids += img_input_ids
                #     target_ids += img_input_ids
            else:
                raise Exception('Wrong Role!!!')
        text_list.append(text)
        assert len(input_ids) == len(target_ids)
    return text_list, input_ids, target_ids


def build_one_instance_for_webvid(tokenizer, conversation, num_video_tokens=8):
    text_list = []
    input_ids, target_ids = [], []

    # text = '### Human: ' + conversation + '\n### Assistant: '
    # one_input_id = tokenizer(text, add_special_tokens=False).input_ids
    # input_ids += one_input_id
    # target_ids += one_input_id  # do not perform loss regression on human prompt

    video_tokens = ' '.join([f'[VID{i}]' for i in range(num_video_tokens)])
    text = conversation + video_tokens
    text_list.append(text)
    one_input_id = tokenizer(text, add_special_tokens=False).input_ids
    input_ids += one_input_id
    target_ids += one_input_id
    assert len(input_ids) == len(target_ids)

    return text_list, input_ids, target_ids


def process_batch_instance(tokenizer, batch_of_conversations, max_tgt_len, dataset='cc3m',
                           num_img_tokens=8, num_video_tokens=8):
    batch_input_ids, batch_target_ids = [], []
    for conversation in batch_of_conversations:
        if dataset == "pgpt4":
            _, one_input_ids, one_target_ids = build_one_instance_for_pgpt4(tokenizer, conversation)
        elif dataset == 'cc3m' or dataset == 'coco2017':
            _, one_input_ids, one_target_ids = build_one_instance_for_cc3m_1(tokenizer, conversation, num_img_tokens)
        elif dataset == 'webvid':
            _, one_input_ids, one_target_ids = build_one_instance_for_webvid(tokenizer, conversation, num_video_tokens)
        else:
            raise Exception("not support dataset name, it should be pgpt4 or cc3m")
        batch_input_ids.append(torch.LongTensor(one_input_ids))
        batch_target_ids.append(torch.LongTensor(one_target_ids))
    input_ids = rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
    target_ids = rnn.pad_sequence(batch_target_ids, batch_first=True, padding_value=-100)
    assert input_ids.size() == target_ids.size()
    input_ids = input_ids[:, :max_tgt_len]
    target_ids = target_ids[:, :max_tgt_len]
    attention_mask = input_ids.ne(tokenizer.pad_token_id)
    assert attention_mask.size() == input_ids.size()
    return input_ids, target_ids, attention_mask.long()


def mask_token(inputs, tokenizer, mlm_probability, vocab_size=None, special_tokens_mask=None):
    """
    randomly mask some input tokens
    """
    indices_replaced = torch.bernoulli(torch.full(inputs.shape, mlm_probability)).bool()
    inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)

    return inputs


def build_one_instance_stage_1(tokenizer, captions, prompt=''):
    input_ids, target_ids = [], []
    texts = ''
    text = '</Img> ' + prompt + '\n### Assistant: '
    texts += text
    one_input_id = tokenizer(text, add_special_tokens=False).input_ids
    input_ids += one_input_id
    target_ids += [-100] * len(one_input_id)  # do not perform loss regression on human prompt

    text = captions + '\n###'
    texts += text
    one_input_id = tokenizer(text, add_special_tokens=False).input_ids
    input_ids += one_input_id
    target_ids += one_input_id
    return input_ids, target_ids


def process_batch_stage_1(tokenizer, batch_of_captions, max_tgt_len, prompt=''):
    batch_input_ids, batch_target_ids = [], []
    for caption in batch_of_captions:
        one_input_ids, one_target_ids = build_one_instance_stage_1(tokenizer, caption, prompt)
        batch_input_ids.append(torch.LongTensor(one_input_ids))
        batch_target_ids.append(torch.LongTensor(one_target_ids))
    input_ids = rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
    target_ids = rnn.pad_sequence(batch_target_ids, batch_first=True, padding_value=-100)
    assert input_ids.size() == target_ids.size()
    input_ids = input_ids[:, :max_tgt_len]
    target_ids = target_ids[:, :max_tgt_len]
    attention_mask = input_ids.ne(tokenizer.pad_token_id)
    assert attention_mask.size() == input_ids.size()
    return input_ids, target_ids, attention_mask.long()


def build_one_instance_stage_2(tokenizer, captions, num_signal_tokens=4, MODALITY='image'):
    input_ids, target_ids = [], []
    text = captions + '\n### Assistant: '
    one_input_id = tokenizer(text, add_special_tokens=False).input_ids
    input_ids += one_input_id
    target_ids += [-100] * len(one_input_id)  # do not perform loss regression on human prompt

    if MODALITY == 'image':
        signal_tokens = ' '.join([f'[IMG{i}]' for i in range(num_signal_tokens)])
    elif MODALITY == 'video':
        signal_tokens = ' '.join([f'[VID{i}]' for i in range(num_signal_tokens)])
    elif MODALITY == 'audio':
        signal_tokens = ' '.join([f'[AUD{i}]' for i in range(num_signal_tokens)])
    else:
        signal_tokens = ''

    text = captions + signal_tokens + '\n###'
    one_input_id = tokenizer(text, add_special_tokens=False).input_ids
    input_ids += one_input_id
    target_ids += one_input_id
    return input_ids, target_ids


def process_batch_stage_2(tokenizer, batch_of_captions, max_tgt_len, num_signal_tokens=4, MODALITY='image'):
    """
    :param mode: the target modality
    :param num_tokens: the number of generated signal tokens for generation
    """
    batch_input_ids, batch_target_ids = [], []
    # batch_caption_lists = []
    for captions in batch_of_captions:
        one_input_ids, one_target_ids = build_one_instance_stage_2(tokenizer, captions,
                                                                   num_signal_tokens=num_signal_tokens,
                                                                   MODALITY=MODALITY)
        batch_input_ids.append(torch.LongTensor(one_input_ids))
        batch_target_ids.append(torch.LongTensor(one_target_ids))
        # batch_caption_lists.append(caption)
    input_ids = rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
    target_ids = rnn.pad_sequence(batch_target_ids, batch_first=True, padding_value=-100)
    assert input_ids.size() == target_ids.size()
    input_ids = input_ids[:, :max_tgt_len]
    target_ids = target_ids[:, :max_tgt_len]
    attention_mask = input_ids.ne(tokenizer.pad_token_id)
    assert attention_mask.size() == input_ids.size()
    return input_ids, target_ids, attention_mask.long()


# def process_batch_stage_2(tokenizer, batch_of_captions, )


def build_one_instance_stage_3(tokenizer, conversation, img_tokens=4, vid_tokens=24, aud_tokens=8):
    text_list = []
    turn_num = len(conversation)
    input_ids, target_ids = [], []
    for i in range(turn_num):
        turn = conversation[i]
        role = turn['from']
        if i == 0:  # the first human turn
            assert role == 'human'
            if turn['input_modality'] != 'text':
                text = '</Img> ' + turn['value'] + '\n### Assistant: '
            else:
                text = turn['value'] + '\n### Assistant: '
            one_input_id = tokenizer(text, add_special_tokens=False).input_ids
            input_ids += one_input_id
            target_ids += [-100] * len(one_input_id)  # do not perform loss regression on human prompt
        else:
            if role == 'human':
                text = 'Human: ' + turn['value'] + '\n### Assistant: '
                one_input_id = tokenizer(text, add_special_tokens=False).input_ids
                input_ids += one_input_id
                target_ids += [-100] * len(one_input_id)
            elif role == 'gpt':
                if turn['output_modality'] == 'image':
                    signal_tokens = ' '.join([f'[IMG{i}]' for i in range(img_tokens)])
                elif turn['output_modality'] == 'video':
                    signal_tokens = ' '.join([f'[VID{i}]' for i in range(vid_tokens)])
                elif turn['output_modality'] == 'audio':
                    signal_tokens = ' '.join([f'[AUD{i}]' for i in range(aud_tokens)])
                else:
                    signal_tokens = ''
                caption = turn['caption']
                text = turn['value'] + signal_tokens + '\n###'
                one_input_id = tokenizer(text, add_special_tokens=False).input_ids
                input_ids += one_input_id
                target_ids += one_input_id
            else:
                raise Exception('Wrong Role!!!')
        text_list.append(text)
        assert len(input_ids) == len(target_ids)
    return text_list, input_ids, target_ids, caption


def process_batch_stage_3(tokenizer, batch_of_conversations, max_tgt_len, img_tokens=4, vid_tokens=24, aud_tokens=8):
    """
    :param mode: the target modality
    :param num_tokens: the number of generated signal tokens for generation
    """
    batch_input_ids, batch_target_ids = [], []
    # batch_caption_lists = []
    for conversation in batch_of_conversations:
        _, one_input_ids, one_target_ids, caption = build_one_instance_stage_3(tokenizer, conversation,
                                                                               img_tokens=img_tokens,
                                                                               vid_tokens=vid_tokens,
                                                                               aud_tokens=aud_tokens)
        batch_input_ids.append(torch.LongTensor(one_input_ids))
        batch_target_ids.append(torch.LongTensor(one_target_ids))
        # batch_caption_lists.append(caption)
    input_ids = rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
    target_ids = rnn.pad_sequence(batch_target_ids, batch_first=True, padding_value=-100)
    assert input_ids.size() == target_ids.size()
    input_ids = input_ids[:, :max_tgt_len]
    # if is_mask_token:
    #     input_ids = mask_token(input_ids, tokenizer, 0.5)
    target_ids = target_ids[:, :max_tgt_len]
    attention_mask = input_ids.ne(tokenizer.pad_token_id)
    assert attention_mask.size() == input_ids.size()
    return input_ids, target_ids, attention_mask.long()


def is_url(url_or_filename):
    parsed = urlparse(url_or_filename)
    return parsed.scheme in ("http", "https")


def l2_loss(u: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
  """
  Args:
    u: (N, T_I_V_A.txt, D) tensor.
    v: (N, T_I_V_A.txt, D) tensor.
  Returns:
    l1_loss: (N,) tensor of summed L1 loss.
  """
  assert u.shape == v.shape, (u.shape, v.shape)
  return ((u - v) ** 2).sum(dim=-1) ** 0.5


def get_modality(path_list):
    _postfix = os.path.splitext(path_list[0])[-1]
    if _postfix == '.jpg':
        return 'image'
    elif _postfix == '.wav':
        return 'audio'
    elif _postfix == '.mp4':
        return 'video'
    else:
        raise NotImplementedError