AI & ML interests

None defined yet.

Recent Activity

nouamanetaziย 
posted an update 4 months ago
view post
Post
4417
After training ๐’๐ฆ๐จ๐ฅ๐‹๐Œ๐Ÿ‘ on ๐Ÿ‘๐Ÿ–๐Ÿ’ ๐‡๐Ÿ๐ŸŽ๐ŸŽ๐ฌ for nearly a month, I've come to realize something most people overlook: ๐ข๐ง๐Ÿ๐ซ๐š๐ฌ๐ญ๐ซ๐ฎ๐œ๐ญ๐ฎ๐ซ๐ž ๐ข๐ฌ ๐ญ๐ก๐ž ๐ฆ๐š๐ค๐ž-๐จ๐ซ-๐›๐ซ๐ž๐š๐ค ๐Ÿ๐š๐œ๐ญ๐จ๐ซ ๐ข๐ง ๐‹๐‹๐Œ ๐ญ๐ซ๐š๐ข๐ง๐ข๐ง๐ . ๐Ÿ”ฅ

Everyone talks about model architecture and data quality. And yes, those matter immensely. But here's what nobody tells you: when your training run fails at 2 AM because of mysterious ๐๐‚๐‚๐‹ ๐ž๐ซ๐ซ๐จ๐ซ๐ฌ, or when your expensive GPU cluster is running at ๐Ÿ”๐ŸŽ% ๐ž๐Ÿ๐Ÿ๐ข๐œ๐ข๐ž๐ง๐œ๐ฒ, the problem isn't your model. It's most probably a ๐ฆ๐ข๐ฌ๐ฎ๐ฌ๐ž ๐จ๐Ÿ ๐ญ๐ก๐ž ๐ก๐š๐ซ๐๐ฐ๐š๐ซ๐ž. ๐Ÿ› ๏ธ

Questions that seemed simple but had no clear answers: Why is ๐Œ๐จ๐„ ๐ญ๐ซ๐š๐ข๐ง๐ข๐ง๐  ๐ฌ๐ฅ๐จ๐ฐ๐ž๐ซ ๐ญ๐ก๐š๐ง ๐๐ž๐ง๐ฌ๐ž ๐ฆ๐จ๐๐ž๐ฅ๐ฌ? Which ๐๐‚๐‚๐‹ ๐Ÿ๐ฅ๐š๐ ๐ฌ should we actually set? How often should we checkpoint without killing throughput?

That's why we built ๐“๐ก๐ž ๐’๐ฆ๐จ๐ฅ ๐“๐ซ๐š๐ข๐ง๐ข๐ง๐  ๐๐ฅ๐š๐ฒ๐›๐จ๐จ๐ค ๐Ÿ“–: a complete guide covering everything from model architecture and data curation to the SmolLM3 training marathon, post-training techniques, and crucially, the ๐ข๐ง๐Ÿ๐ซ๐š๐ฌ๐ญ๐ซ๐ฎ๐œ๐ญ๐ฎ๐ซ๐ž ๐ฅ๐š๐ฒ๐ž๐ซ that most teams get wrong.

We validated real vs theoretical bandwidth across the entire stack: ๐‡๐๐Œ๐Ÿ‘ ๐ก๐ข๐ญ๐ญ๐ข๐ง๐  ๐Ÿ‘ ๐“๐/๐ฌ, ๐๐•๐‹๐ข๐ง๐ค ๐Ÿ’.๐ŸŽ ๐ซ๐ž๐š๐œ๐ก๐ข๐ง๐  ๐Ÿ•๐Ÿ–๐Ÿ” ๐†๐/๐ฌ, ๐๐‚๐ˆ๐ž ๐†๐ž๐ง๐Ÿ’ ๐š๐ญ ๐Ÿ๐Ÿ’.๐Ÿ ๐†๐/๐ฌ. Then we ran collective operations across ๐Ÿ๐Ÿ๐Ÿ– ๐†๐๐”๐ฌ (16 nodes, 8xH100s each) and measured how performance degrades at scale: all-reduce drops from ๐Ÿ’๐Ÿ–๐ŸŽ ๐†๐/๐ฌ on a single node to ๐Ÿ‘๐Ÿ๐ŸŽ-๐Ÿ‘๐Ÿ“๐ŸŽ ๐†๐/๐ฌ across 16 nodes.

If you've ever wondered why your training runs are slower than they should be, or you're planning to scale up and want to avoid expensive mistakes, this guide might save you weeks of debugging.

๐“๐ก๐ž ๐’๐ฆ๐จ๐ฅ ๐“๐ซ๐š๐ข๐ง๐ข๐ง๐  ๐๐ฅ๐š๐ฒ๐›๐จ๐จ๐ค: https://lnkd.in/e5MKXUHS

Shared with โค๏ธ by the HuggingFace team
megย 
posted an update 4 months ago
view post
Post
4033
๐Ÿค– Did you know your voice might be cloned without your consent from just *one sentence* of audio?
That's not great. So with @frimelle , we brainstormed a new idea for developers who want to curb malicious use: โœจThe Voice Consent Gate.โœจ
Details, code, here: https://huggingface.co/blog/voice-consent-gate
  • 3 replies
ยท
anditoย 
posted an update 4 months ago
view post
Post
2204
Finally, our new paper is out! "๐—™๐—ถ๐—ป๐—ฒ๐—ฉ๐—ถ๐˜€๐—ถ๐—ผ๐—ป: ๐—ข๐—ฝ๐—ฒ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—œ๐˜€ ๐—”๐—น๐—น ๐—ฌ๐—ผ๐˜‚ ๐—ก๐—ฒ๐—ฒ๐—ฑ"! ๐Ÿฅณ
FineVision: Open Data Is All You Need (2510.17269)

If you've ever trained a VLM, you know this problem: nobody shares their data mixtures. It's a black box, making replicating SOTA work impossible.
We wanted to change that.

FineVision unifies 200 sources into 24 million samples. With 17.3 million images and 9.5 billion answer tokens, it's the largest open resource of its kind.

In the paper, we share how we built it:
๐Ÿ” finding and cleaning data at scale
๐Ÿงน removing excessive duplicates across sources
๐Ÿค— decontaminating against 66 public benchmarks

My favorite part is Figure 6 (in the video!). It's our visual diversity analysis. It shows that FineVision isn't just bigger; it's more balanced and conceptually richer than other open datasets.
NVIDIA's Eagle 2 paper highlighted just how critical this visual diversity is, and our results confirm it: models trained on FineVision consistently outperform those trained on any other open dataset on 11 benchmarks!

๐ŸŽ‰ To celebrate the paper, Iโ€™m also releasing a concatenated and shuffled version of the full dataset! ๐Ÿ‘‰HuggingFaceM4/FineVision_full_shuffled

Itโ€™s ready to stream, so you can start training your own models right away:

from datasets import load_dataset
d = load_dataset("HuggingFaceM4/FineVision_full_shuffled", split="train", streaming=True)
print(next(iter(d)))

A big shoutout to the first authors: Luis Wiedmann and Orr Zohar. They are rockstars!
megย 
posted an update 5 months ago
view post
Post
2937
๐Ÿค– As AI-generated content is shared in movies/TV/across the web, there's one simple low-hanging fruit ๐Ÿ‡ to help know what's real: Visible watermarks. With the Gradio team, I've made sure it's trivially easy to add this disclosure to images, video, chatbot text. See how: https://huggingface.co/blog/watermarking-with-gradio
Thanks to the code collab in particular from @abidlabs and Yuvraj Sharma.
ariG23498ย 
posted an update 5 months ago
view post
Post
1632
New post is live!

This time we cover some major updates to transformers.

๐Ÿค—
  • 2 replies
ยท
eliebakย 
posted an update 5 months ago
view post
Post
4087
Super excited to announce that our research team at Hugging Face will be doing an AMA on reddit r/LocalLLaMA.

Come ask any questions to the team behind SmolLM, FineWeb and more! And who knows, maybe thereโ€™ll be a shiny new release to talk about?

Thursday 4th September, 8AM-11AM PST ๐Ÿค—

science
eliebakย 
posted an update 6 months ago
view post
Post
736
Motif 2.6B tech report is pretty insane, first time i see a model with differential attention and polynorm trained at scale!

> It's trained on 2.5T of token, with a "data mixture schedule" to continuously adjust the mixture over training.
> They use WSD with a "Simple moving average" averaging the last 6 ckpt every 8B token.
> They trained on Finemath, Fineweb2, DCLM, TxT360.
> Lot of details in the finetuning data they used, for instance they used EvolKit and did some "dataset fusion" to have more compressed knowledge into the data.
> They mention they also tried Normalized GPT, QK-Norm and Cross Layer Attention.

Motif-Technologies/Motif-2.6B
megย 
posted an update 6 months ago
BrigitteTousiย 
posted an update 6 months ago