Hugging Quants

Activity Feed

AI & ML interests

Optimised quants for high-throughput deployments! Compatible with Transformers, TGI & vLLM πŸ€—

Recent Activity

hugging-quants's activity

XenovaΒ 
posted an update 6 days ago
view post
Post
1861
Introducing Moonshine Web: real-time speech recognition running 100% locally in your browser!
πŸš€ Faster and more accurate than Whisper
πŸ”’ Privacy-focused (no data leaves your device)
⚑️ WebGPU accelerated (w/ WASM fallback)
πŸ”₯ Powered by ONNX Runtime Web and Transformers.js

Demo: webml-community/moonshine-web
Source code: https://github.com/huggingface/transformers.js-examples/tree/main/moonshine-web
XenovaΒ 
posted an update 16 days ago
view post
Post
2489
Introducing TTS WebGPU: The first ever text-to-speech web app built with WebGPU acceleration! πŸ”₯ High-quality and natural speech generation that runs 100% locally in your browser, powered by OuteTTS and Transformers.js. πŸ€— Try it out yourself!

Demo: webml-community/text-to-speech-webgpu
Source code: https://github.com/huggingface/transformers.js-examples/tree/main/text-to-speech-webgpu
Model: onnx-community/OuteTTS-0.2-500M (ONNX), OuteAI/OuteTTS-0.2-500M (PyTorch)
reach-vbΒ 
posted an update 18 days ago
view post
Post
3192
VLMs are going through quite an open revolution AND on-device friendly sizes:

1. Google DeepMind w/ PaliGemma2 - 3B, 10B & 28B: google/paligemma-2-release-67500e1e1dbfdd4dee27ba48

2. OpenGVLabs w/ InternVL 2.5 - 1B, 2B, 4B, 8B, 26B, 38B & 78B: https://huggingface.co/collections/OpenGVLab/internvl-25-673e1019b66e2218f68d7c1c

3. Qwen w/ Qwen 2 VL - 2B, 7B & 72B: Qwen/qwen2-vl-66cee7455501d7126940800d

4. Microsoft w/ FlorenceVL - 3B & 8B: https://huggingface.co/jiuhai

5. Moondream2 w/ 0.5B: https://huggingface.co/vikhyatk/

What a time to be alive! πŸ”₯
dvilasueroΒ 
posted an update 19 days ago
view post
Post
2257
🌐 Announcing Global-MMLU: an improved MMLU Open dataset with evaluation coverage across 42 languages, built with Argilla and the Hugging Face community.

Global-MMLU is the result of months of work with the goal of advancing Multilingual LLM evaluation. It's been an amazing open science effort with collaborators from Cohere For AI, Mila - Quebec Artificial Intelligence Institute, EPFL, Massachusetts Institute of Technology, AI Singapore, National University of Singapore, KAIST, Instituto Superior TΓ©cnico, Carnegie Mellon University, CONICET, and University of Buenos Aires.

🏷️ +200 contributors used Argilla MMLU questions where regional, dialect, or cultural knowledge was required to answer correctly. 85% of the questions required Western-centric knowledge!

Thanks to this annotation process, the open dataset contains two subsets:

1. πŸ—½ Culturally Agnostic: no specific regional, cultural knowledge is required.
2. βš–οΈ Culturally Sensitive: requires dialect, cultural knowledge or geographic knowledge to answer correctly.

Moreover, we provide high quality translations of 25 out of 42 languages, thanks again to the community and professional annotators leveraging Argilla on the Hub.

I hope this will ensure a better understanding of the limitations and challenges for making open AI useful for many languages.

Dataset: CohereForAI/Global-MMLU
XenovaΒ 
posted an update 27 days ago
view post
Post
3916
We just released Transformers.js v3.1 and you're not going to believe what's now possible in the browser w/ WebGPU! 🀯 Let's take a look:
πŸ”€ Janus from Deepseek for unified multimodal understanding and generation (Text-to-Image and Image-Text-to-Text)
πŸ‘οΈ Qwen2-VL from Qwen for dynamic-resolution image understanding
πŸ”’ JinaCLIP from Jina AI for general-purpose multilingual multimodal embeddings
πŸŒ‹ LLaVA-OneVision from ByteDance for Image-Text-to-Text generation
πŸ€Έβ€β™€οΈ ViTPose for pose estimation
πŸ“„ MGP-STR for optical character recognition (OCR)
πŸ“ˆ PatchTST & PatchTSMixer for time series forecasting

That's right, everything running 100% locally in your browser (no data sent to a server)! πŸ”₯ Huge for privacy!

Check out the release notes for more information. πŸ‘‡
https://github.com/huggingface/transformers.js/releases/tag/3.1.0

Demo link (+ source code): webml-community/Janus-1.3B-WebGPU
reach-vbΒ 
posted an update about 1 month ago
view post
Post
3151
Massive week for Open AI/ ML:

Mistral Pixtral & Instruct Large - ~123B, 128K context, multilingual, json + function calling & open weights
mistralai/Pixtral-Large-Instruct-2411
mistralai/Mistral-Large-Instruct-2411

Allen AI TΓΌlu 70B & 8B - competive with claude 3.5 haiku, beats all major open models like llama 3.1 70B, qwen 2.5 and nemotron
allenai/tulu-3-models-673b8e0dc3512e30e7dc54f5
allenai/tulu-3-datasets-673b8df14442393f7213f372

Llava o1 - vlm capable of spontaneous, systematic reasoning, similar to GPT-o1, 11B model outperforms gemini-1.5-pro, gpt-4o-mini, and llama-3.2-90B-vision
Xkev/Llama-3.2V-11B-cot

Black Forest Labs Flux.1 tools - four new state of the art model checkpoints & 2 adapters for fill, depth, canny & redux, open weights
reach-vb/black-forest-labs-flux1-6743847bde9997dd26609817

Jina AI Jina CLIP v2 - general purpose multilingual and multimodal (text & image) embedding model, 900M params, 512 x 512 resolution, matroyoshka representations (1024 to 64)
jinaai/jina-clip-v2

Apple AIM v2 & CoreML MobileCLIP - large scale vision encoders outperform CLIP and SigLIP. CoreML optimised MobileCLIP models
apple/aimv2-6720fe1558d94c7805f7688c
apple/coreml-mobileclip

A lot more got released like, OpenScholar ( OpenScholar/openscholar-v1-67376a89f6a80f448da411a6), smoltalk ( HuggingFaceTB/smoltalk), Hymba ( nvidia/hymba-673c35516c12c4b98b5e845f), Open ASR Leaderboard ( hf-audio/open_asr_leaderboard) and much more..

Can't wait for the next week! πŸ€—
dvilasueroΒ 
posted an update about 1 month ago
XenovaΒ 
posted an update about 1 month ago
view post
Post
5515
Have you tried out πŸ€— Transformers.js v3? Here are the new features:
⚑ WebGPU support (up to 100x faster than WASM)
πŸ”’ New quantization formats (dtypes)
πŸ› 120 supported architectures in total
πŸ“‚ 25 new example projects and templates
πŸ€– Over 1200 pre-converted models
🌐 Node.js (ESM + CJS), Deno, and Bun compatibility
🏑 A new home on GitHub and NPM

Get started with npm i @huggingface/transformers.

Learn more in our blog post: https://huggingface.co/blog/transformersjs-v3
  • 3 replies
Β·
reach-vbΒ 
posted an update about 1 month ago
view post
Post
4326
What a brilliant week for Open Source AI!

Qwen 2.5 Coder by Alibaba - 0.5B / 1.5B / 3B / 7B / 14B/ 32B (Base + Instruct) Code generation LLMs, with 32B tackling giants like Gemnini 1.5 Pro, Claude Sonnet
Qwen/qwen25-coder-66eaa22e6f99801bf65b0c2f

LLM2CLIP from Microsoft - Leverage LLMs to train ultra-powerful CLIP models! Boosts performance over the previous SOTA by ~17%
microsoft/llm2clip-672323a266173cfa40b32d4c

Athene v2 Chat & Agent by NexusFlow - SoTA general LLM fine-tuned from Qwen 2.5 72B excels at Chat + Function Calling/ JSON/ Agents
Nexusflow/athene-v2-6735b85e505981a794fb02cc

Orca Agent Instruct by Microsoft - 1 million instruct pairs covering text editing, creative writing, coding, reading comprehension, etc - permissively licensed
microsoft/orca-agentinstruct-1M-v1

Ultravox by FixieAI - 70B/ 8B model approaching GPT4o level, pick any LLM, train an adapter with Whisper as Audio Encoder
reach-vb/ultravox-audio-language-model-release-67373b602af0a52b2a88ae71

JanusFlow 1.3 by DeepSeek - Next iteration of their Unified MultiModal LLM Janus with RectifiedFlow
deepseek-ai/JanusFlow-1.3B

Common Corpus by Pleais - 2,003,039,184,047 multilingual, commercially permissive and high quality tokens!
PleIAs/common_corpus

I'm sure I missed a lot, can't wait for the next week!

Put down in comments what I missed! πŸ€—
reach-vbΒ 
posted an update about 2 months ago
view post
Post
1586
Smol TTS models are here! OuteTTS-0.1-350M - Zero shot voice cloning, built on LLaMa architecture, CC-BY license! πŸ”₯

> Pure language modeling approach to TTS
> Zero-shot voice cloning
> LLaMa architecture w/ Audio tokens (WavTokenizer)
> BONUS: Works on-device w/ llama.cpp ⚑

Three-step approach to TTS:

> Audio tokenization using WavTokenizer (75 tok per second)
> CTC forced alignment for word-to-audio token mapping
> Structured prompt creation w/ transcription, duration, audio tokens

The model is extremely impressive for 350M parameters! Kudos to the
OuteAI team on such a brilliant feat - I'd love to see this be applied on larger data and smarter backbones like SmolLM πŸ€—

Check out the models here: OuteAI/outetts-6728aa71a53a076e4ba4817c
dvilasueroΒ 
posted an update about 2 months ago
view post
Post
683
Build datasets for AI on the Hugging Face Hubβ€”10x easier than ever!

Today, I'm excited to share our biggest feature since we joined Hugging Face.

Here’s how it works:

1. Pick a datasetβ€”upload your own or choose from 240K open datasets.
2. Paste the Hub dataset ID into Argilla and set up your labeling interface.
3. Share the URL with your team or the whole community!

And the best part? It’s:
- No code – no Python needed
- Integrated – all within the Hub
- Scalable – from solo labeling to 100s of contributors

I am incredibly proud of the team for shipping this after weeks of work and many quick iterations.

Let's make this sentence obsolete: "Everyone wants to do the model work, not the data work."


Read, share, and like the HF blog post:
https://huggingface.co/blog/argilla-ui-hub
reach-vbΒ 
posted an update about 2 months ago
view post
Post
2972
Smol models ftw! AMD released AMD OLMo 1B - beats OpenELM, tiny llama on MT Bench, Alpaca Eval - Apache 2.0 licensed πŸ”₯

> Trained with 1.3 trillion (dolma 1.7) tokens on 16 nodes, each with 4 MI250 GPUs

> Three checkpoints:

- AMD OLMo 1B: Pre-trained model
- AMD OLMo 1B SFT: Supervised fine-tuned on Tulu V2, OpenHermes-2.5, WebInstructSub, and Code-Feedback datasets
- AMD OLMo 1B SFT DPO: Aligned with human preferences using Direct Preference Optimization (DPO) on UltraFeedback dataset

Key Insights:
> Pre-trained with less than half the tokens of OLMo-1B
> Post-training steps include two-phase SFT and DPO alignment
> Data for SFT:
- Phase 1: Tulu V2
- Phase 2: OpenHermes-2.5, WebInstructSub, and Code-Feedback

> Model checkpoints on the Hub & Integrated with Transformers ⚑️

Congratulations & kudos to AMD on a brilliant smol model release! πŸ€—

amd/amd-olmo-6723e7d04a49116d8ec95070
reach-vbΒ 
posted an update 2 months ago
view post
Post
2448
What a great day for Open Science! @AIatMeta released models, datasets, and code for many of its research artefacts! πŸ”₯

1. Meta Segment Anything Model 2.1: An updated checkpoint with improved results on visually similar objects, small objects and occlusion handling. A new developer suite will be added to make it easier for developers to build with SAM 2.

Model checkpoints: reach-vb/sam-21-6702d40defe7611a8bafa881

2. Layer Skip: Inference code and fine-tuned checkpoints demonstrating a new method for enhancing LLM performance.

Model checkpoints: facebook/layerskip-666b25c50c8ae90e1965727a

3. SALSA: New code enables researchers to benchmark AI-based attacks to validate security for post-quantum cryptography.

Repo: https://github.com/facebookresearch/LWE-benchmarking

4. Meta Lingua: A lightweight and self-contained codebase designed to train language models at scale.

Repo: https://github.com/facebookresearch/lingua

5. Meta Open Materials: New open source models and the largest dataset to accelerate AI-driven discovery of new inorganic materials.

Model checkpoints: fairchem/OMAT24

6. MEXMA: A new research paper and code for our novel pre-trained cross-lingual sentence encoder covering 80 languages.

Model checkpoint: facebook/MEXMA

7. Self-Taught Evaluator: a new method for generating synthetic preference data to train reward models without relying on human annotations.

Model checkpoint: facebook/Self-taught-evaluator-llama3.1-70B

8. Meta Spirit LM: An open-source language model for seamless speech and text integration.

Repo: https://github.com/facebookresearch/spiritlm
  • 3 replies
Β·
dvilasueroΒ 
posted an update 2 months ago
view post
Post
989
Big news! You can now build strong ML models without days of human labelling

You simply:
- Define your dataset, including annotation guidelines, labels and fields
- Optionally label some records manually.
- Use an LLM to auto label your data with a human (you? your team?) in the loop!

Get started with this blog post:
https://huggingface.co/blog/sdiazlor/custom-text-classifier-ai-human-feedback
reach-vbΒ 
posted an update 2 months ago
view post
Post
5444
Multimodal Ichigo Llama 3.1 - Real Time Voice AI πŸ”₯

> WhisperSpeech X Llama 3.1 8B
> Trained on 50K hours of speech (7 languages)
> Continually trained on 45hrs 10x A1000s
> MLS -> WhisperVQ tokens -> Llama 3.1
> Instruction tuned on 1.89M samples
> 70% speech, 20% transcription, 10% text
> Apache 2.0 licensed ⚑

Architecture:
> WhisperSpeech/ VQ for Semantic Tokens
> Llama 3.1 8B Instruct for Text backbone
> Early fusion (Chameleon)

I'm super bullish on HomeBrew/ Jan and early fusion, audio and text, multimodal models!

(P.S. Play with the demo on Hugging Face: jan-hq/Ichigo-llama3.1-s-instruct)
reach-vbΒ 
posted an update 3 months ago
view post
Post
3089
NEW: Open Source Text/ Image to video model is out - MIT licensed - Rivals Gen-3, Pika & Kling πŸ”₯

> Pyramid Flow: Training-efficient Autoregressive Video Generation method
> Utilizes Flow Matching
> Trains on open-source datasets
> Generates high-quality 10-second videos
> Video resolution: 768p
> Frame rate: 24 FPS
> Supports image-to-video generation

> Model checkpoints available on the hub πŸ€—: rain1011/pyramid-flow-sd3
reach-vbΒ 
posted an update 3 months ago
view post
Post
2093
On-device AI framework ecosystem is blooming these days:

1. llama.cpp - All things Whisper, LLMs & VLMs - run across Metal, CUDA and other backends (AMD/ NPU etc)
https://github.com/ggerganov/llama.cpp

2. MLC - Deploy LLMs across platforms especially WebGPU (fastest WebGPU LLM implementation out there)
https://github.com/mlc-ai/web-llm

3. MLX - Arguably the fastest general purpose framework (Mac only) - Supports all major Image Generation (Flux, SDXL, etc), Transcription (Whisper), LLMs
https://github.com/ml-explore/mlx-examples

4. Candle - Cross-platform general purpose framework written in Rust - wide coverage across model categories
https://github.com/huggingface/candle

Honorable mentions:

1. Transformers.js - Javascript (WebGPU) implementation built on top of ONNXruntimeweb
https://github.com/xenova/transformers.js

2. Mistral rs - Rust implementation for LLMs & VLMs, built on top of Candle
https://github.com/EricLBuehler/mistral.rs

3. Ratchet - Cross platform, rust based WebGPU framework built for battle-tested deployments
https://github.com/huggingface/ratchet

4. Zml - Cross platform, Zig based ML framework
https://github.com/zml/zml

Looking forward to how the ecosystem would look 1 year from now - Quite bullish on the top 4 atm - but open source ecosystem changes quite a bit! πŸ€—

Also, which frameworks did I miss?
  • 1 reply
Β·