An Autoregressive Text-to-Graph Framework for Joint Entity and Relation Extraction
Paper
•
2401.01326
•
Published
Small models
from gliner import GLiNER
model = GLiNER.from_pretrained("urchade/gliner_multi_pii-v1")
text = """
Harilala Rasoanaivo, un homme d'affaires local d'Antananarivo, a enregistré une nouvelle société nommée "Rasoanaivo Enterprises" au Lot II M 92 Antohomadinika. Son numéro est le +261 32 22 345 67, et son adresse électronique est [email protected]. Il a fourni son numéro de sécu 501-02-1234 pour l'enregistrement.
"""
labels = ["work", "booking number", "personally identifiable information", "driver licence", "person", "address", "company", "email", "passport number", "Social Security Number", "phone number"]
entities = model.predict_entities(text, labels)
for entity in entities:
print(entity["text"], "=>", entity["label"])
Harilala Rasoanaivo => person
Rasoanaivo Enterprises => company
Lot II M 92 Antohomadinika => full address
+261 32 22 345 67 => phone number
[email protected] => email
501-02-1234 => Social Security Number
from gliner import GLiNER
# Initialize GLiNER
model = GLiNER.from_pretrained("urchade/gliner_multiv2.1")
text = "This is a text about Bill Gates and Microsoft."
# Labels for entity prediction
labels = ["person", "organization", "email"]
entities = model.predict_entities(text, labels, threshold=0.5)
for entity in entities:
print(entity["text"], "=>", entity["label"])