DeepGHS

community
Verified

AI & ML interests

Computer Vision Technology and Data Collection for Anime Waifu

Recent Activity

narugo  updated a dataset less than a minute ago
deepghs/yande-webp-4Mpixel
narugo  updated a dataset 2 minutes ago
deepghs/zerochan-webp-4Mpixel
narugo  updated a dataset 5 minutes ago
deepghs/nozomi_standalone_full
View all activity

deepghs's activity

ImranzamanML 
posted an update 15 days ago
view post
Post
3147
Hugging Face just launched the AI Agents Course – a free journey from beginner to expert in AI agents!

- Learn AI Agent fundamentals, use cases and frameworks
- Use top libraries like LangChain & LlamaIndex
- Compete in challenges & earn a certificate
- Hands-on projects & real-world applications

https://huggingface.co/learn/agents-course/unit0/introduction

You can join for a live Q&A on Feb 12 at 5PM CET to learn more about the course here

https://www.youtube.com/live/PopqUt3MGyQ
eienmojiki 
posted an update 18 days ago
Tonic 
posted an update 22 days ago
view post
Post
2214
🙋🏻‍♂️hey there folks ,

Goedel's Theorem Prover is now being demo'ed on huggingface : Tonic/Math

give it a try !
not-lain 
posted an update 27 days ago
Tonic 
posted an update 28 days ago
view post
Post
2921
🙋🏻‍♂️ Hey there folks ,

our team made a game during the @mistral-game-jam and we're trying to win the community award !

try our game out and drop us a ❤️ like basically to vote for us !

Mistral-AI-Game-Jam/TextToSurvive

hope you like it !
not-lain 
posted an update about 1 month ago
view post
Post
1624
we now have more than 2000 public AI models using ModelHubMixin🤗
Tonic 
posted an update about 1 month ago
view post
Post
1869
🙋🏻‍♂️ Hey there folks ,

Facebook AI just released JASCO models that make music stems .

you can try it out here : Tonic/audiocraft

hope you like it
Tonic 
posted an update about 1 month ago
view post
Post
2446
🙋🏻‍♂️Hey there folks , Open LLM Europe just released Lucie 7B-Instruct model , a billingual instruct model trained on open data ! You can check out my unofficial demo here while we wait for the official inference api from the group : Tonic/Lucie-7B hope you like it 🚀
not-lain 
posted an update about 1 month ago
view post
Post
4011
Published a new blogpost 📖
In this blogpost I have gone through the transformers' architecture emphasizing how shapes propagate throughout each layer.
🔗 https://huggingface.co/blog/not-lain/tensor-dims
some interesting takeaways :
Tonic 
posted an update about 2 months ago
view post
Post
1705
microsoft just released Phi-4 , check it out here : Tonic/Phi-4

hope you like it :-)
DamarJati 
posted an update about 2 months ago
view post
Post
2880
Happy New Year 2025 🤗
For the Huggingface community.
ImranzamanML 
posted an update 3 months ago
view post
Post
633
Deep understanding of (C-index) evaluation measure for better model
Lets start with three patients groups:

Group A
Group B
Group C
For each patient, we will predict risk score (higher score means higher risk of early event).

Step 1: Understanding Concordance Index
The Concordance Index (C-index) evaluate that how well the model ranks survival times.

Understand with sample data:
Group A has 3 patients with actual survival times and predicted risk scores:

Patient Actual Survival Time Predicted Risk Score
P1 5 months 0.8
P2 3 months 0.9
P3 10 months 0.2
Comparable pairs:

(P1, P2): P2 has a shorter survival time and a higher risk score → Concordant ✅
(P1, P3): P3 has a longer survival time and a lower risk score → Concordant ✅
(P2, P3): P3 has a longer survival time and a lower risk score → Concordant ✅
Total pairs = 3
Total concordant pairs = 3

C-index for Group A = Concordant pairs/Total pairs= 3/3 = 1.0

Step 2: Calculate C-index for All Groups
Repeat the process for all groups. For now we can assume:

Group A: C-index = 1.0
Group B: C-index = 0.8
Group C: C-index = 0.6
Step 3: Stratified Concordance Index
The Stratified Concordance Index combines the C-index scores of all groups and focusing on the following:

Average performance across groups (mean of C-indices).
Consistency across groups (low standard deviation of C-indices).
Formula:
Stratified C-index = Mean(C-index scores) - Standard Deviation(C-index scores)

Calculate the mean:
Mean=1.0 + 0.8 + 0.6/3 = 0.8

Calculate the standard deviation:
Standard Deviation= sqrt((1.0-0.8)^2 + (0.8-0.8)^2 + (0.6-0.8)^/3) = 0.16

Stratified C-index:
Stratified C-index = 0.8 - 0.16 = 0.64

Step 4: Interpret the Results
A high Stratified C-index means:

The model predicts well overall (high mean C-index).
  • 1 reply
·
lunarflu 
posted an update 3 months ago