HuggingFaceM4

Enterprise
company
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

HuggingFaceM4's activity

andito 
posted an update about 16 hours ago
view post
Post
664
Extremely bullish on @CohereForAI 's Aya Vision (8B & 32B) - new SOTA open-weight VLMs

- 8B wins up to 81% of the time in its class, better than Gemini Flash
- 32B beats Llama 3.2 90B!
- Covers 23 languages, excels in image captioning, VQA & more
- Integrated on transformers from Day 0!

Efficient multimodal models are here to stay!!🔥
Check out their blog! https://huggingface.co/blog/aya-vision
clem 
posted an update 1 day ago
view post
Post
3183
Super happy to welcome Nvidia as our latest enterprise hub customer. They have almost 2,000 team members using Hugging Face, and close to 20,000 followers of their org. Can't wait to see what they'll open-source for all of us in the coming months!

Nvidia's org: https://huggingface.co/nvidia
Enterprise hub: https://huggingface.co/enterprise
davanstrien 
posted an update 6 days ago
view post
Post
2535
📊 Introducing "Hugging Face Dataset Spotlight" 📊

I'm excited to share the first episode of our AI-generated podcast series focusing on nice datasets from the Hugging Face Hub!

This first episode explores mathematical reasoning datasets:

- SynthLabsAI/Big-Math-RL-Verified: Over 250,000 rigorously verified problems spanning multiple difficulty levels and mathematical domains
- open-r1/OpenR1-Math-220k: 220,000 math problems with multiple reasoning traces, verified for accuracy using Math Verify and Llama-3.3-70B models.
- facebook/natural_reasoning: 1.1 million general reasoning questions carefully deduplicated and decontaminated from existing benchmarks, showing superior scaling effects when training models like Llama3.1-8B-Instruct.

Plus a bonus segment on bespokelabs/bespoke-manim!

https://www.youtube.com/watch?v=-TgmRq45tW4
dylanebert 
posted an update 6 days ago
view post
Post
952
📢 New #1 in Generative 3D

CSM/Cube from Common Sense Machines is now the top ranked image-to-3d model

check out the results in dylanebert/3d-arena
davanstrien 
posted an update 7 days ago
view post
Post
3537
Quick POC: Turn a Hugging Face dataset card into a short podcast introducing the dataset using all open models.

I think I'm the only weirdo who would enjoy listening to something like this though 😅

Here is an example for eth-nlped/stepverify
  • 2 replies
·
freddyaboulton 
posted an update 9 days ago
view post
Post
3042
Getting WebRTC and Websockets right in python is very tricky. If you've tried to wrap an LLM in a real-time audio layer then you know what I'm talking about.

That's where FastRTC comes in! It makes WebRTC and Websocket streams super easy with minimal code and overhead.

Check out our org: hf.co/fastrtc
m-ric 
posted an update 10 days ago
view post
Post
4476
We now have a Deep Research for academia: SurveyX automatically writes academic surveys nearly indistinguishable from human-written ones 🔥

Researchers from Beijing and Shanghai just published the first application of a deep research system to academia: their algorithm, given a question, can give you a survey of all papers on the subject.

To make a research survey, you generally follow two steps, preparation (collect and organize papers) and writing (outline creation, writing, polishing). Researchers followed the same two steps and automated them.

🎯 For the preparation part, a key part is find all the important references on the given subject.
Researchers first cast a wide net of all relevant papers. But then finding the really important ones is like distilling knowledge from a haystack of information. To solve this challenge, they built an “AttributeTree” object that structures key information from citations. Ablating these AttributeTrees significantly decreased structure and synthesis scores, so they were really useful!

📝 For the writing part, key was to get a synthesis that's both short and true. This is not easy to get with LLMs! So they used methods like LLM-based deduplication to shorten the too verbose listings made by LLMs, and RAG to grab original quotes instead of made-up ones.

As a result, their system outperforms previous approaches by far!

As assessed by LLM-judges, the quality score os SurveyX even approaches this of human experts, with 4.59/5 vs 4.75/5 🏆

I advise you to read the paper, it's a great overview of the kind of assistants that we'll get in the short future! 👉 SurveyX: Academic Survey Automation via Large Language Models (2502.14776)
Their website shows examples of generated surveys 👉 http://www.surveyx.cn/
lysandre 
posted an update 13 days ago
view post
Post
5422
SmolVLM-2 and SigLIP-2 are now part of transformers in dedicated releases!

They're added on top of the v4.49.0 release, and can be installed from the following tags: v4.49.0-SmolVLM-2 and v4.49.0-SigLIP-2.

This marks a new beginning for the release process of transformers. For the past five years, we've been doing monthly releases featuring many models (v4.49.0, the latest release, features 9 new architectures).

Starting with SmolVLM-2 & SigLIP2, we'll now additionally release tags supporting new models on a stable branch. These models are therefore directly available for use by installing from the tag itself. These tags will continue to be updated with fixes applied to these models.

Going forward, continue expecting software releases following semantic versioning: v4.50.0 will have ~10 new architectures compared to v4.49.0, as well as a myriad of new features, improvements and bug fixes. Accompanying these software releases, we'll release tags offering brand new models as fast as possible, to make them accessible to all immediately.
  • 1 reply
·
davanstrien 
posted an update 14 days ago
view post
Post
2555
Hacked together a way to log trl GRPO training completions to a 🤗 dataset repo. This allows you to:

- Track rewards from multiple reward functions
- Treat the completion and rewards from training as a "proper" dataset and do EDA
- Share results for open science

The implementation is super hacky, but I'm curious if people would find this useful.

To push completions to the Hub, you just need two extra parameters:

log_completions=True
log_completions_hub_repo='your-username/repo-name'

Example dataset: davanstrien/test-logs
Colab: https://colab.research.google.com/drive/1wzBFPVthRYYTp-mEYlznLg_e_0Za1M3g

frimelle 
posted an update 14 days ago
view post
Post
2374
What’s in a name? More than you might think, especially for AI.
Whenever I introduce myself, people often start speaking French to me, even though my French is très basic. It turns out that AI systems do something similar:
Large language models infer cultural identity from names, shaping their responses based on presumed backgrounds. But is this helpful personalization or a reinforcement of stereotypes?
In our latest paper, we explored this question by testing DeepSeek, Llama, Aya, Mistral-Nemo, and GPT-4o-mini on how they associate names with cultural identities. We analysed 900 names from 30 cultures and found strong assumptions baked into AI responses: some cultures were overrepresented, while others barely registered.
For example, a name like "Jun" often triggered Japan-related responses, while "Carlos" was linked primarily to Mexico, even though these names exist in multiple countries. Meanwhile, names from places like Ireland led to more generic answers, suggesting weaker associations in the training data.
This has real implications for AI fairness: How should AI systems personalize without stereotyping? Should they adapt at all based on a name?
Work with some of my favourite researchers: @sidicity Arnav Arora and @IAugenstein
Read the full paper here: Presumed Cultural Identity: How Names Shape LLM Responses (2502.11995)
merve 
posted an update 15 days ago
view post
Post
5403
Google just released PaliGemma 2 Mix: new versatile instruction vision language models 🔥

> Three new models: 3B, 10B, 28B with res 224, 448 💙
> Can do vision language tasks with open-ended prompts, understand documents, and segment or detect anything 🤯

Read more https://huggingface.co/blog/paligemma2mix
Try the demo google/paligemma2-10b-mix
All models are here google/paligemma-2-mix-67ac6a251aaf3ee73679dcc4
clem 
posted an update 16 days ago
view post
Post
2766
What are the best organizations to follow on @huggingface ?

On top of my head:
- Deepseek (35,000 followers): https://huggingface.co/deepseek-ai
- Meta Llama (27,000 followers): https://huggingface.co/meta-llama
- Black Forrest Labs (11,000 followers): https://huggingface.co/black-forest-labs
- OpenAI (5,000 followers): https://huggingface.co/openai
- Nvidia (16,000 followers): https://huggingface.co/nvidia
- MIcrosoft (9,000 followers): https://huggingface.co/microsoft
- AllenAI (2,000 followers): https://huggingface.co/allenai
- Mistral (5,000 followers): https://huggingface.co/mistralai
- XAI (600 followers): https://huggingface.co/xai-org
- Stability AI (16,000 followers): https://huggingface.co/stabilityai
- Qwen (16,000 followers): https://huggingface.co/Qwen
- GoogleAI (8,000 followers): https://huggingface.co/google
- Unsloth (3,000 followers): https://huggingface.co/unsloth
- Bria AI (4,000 followers): https://huggingface.co/briaai
- NousResearch (1,300 followers): https://huggingface.co/NousResearch

Bonus, the agent course org with 17,000 followers: https://huggingface.co/agents-course
  • 1 reply
·
m-ric 
posted an update 16 days ago
view post
Post
2969
Less is More for Reasoning (LIMO): a 32B model fine-tuned with 817 examples can beat o1-preview on math reasoning! 🤯

Do we really need o1's huge RL procedure to see reasoning emerge? It seems not.
Researchers from Shanghai Jiaotong University just demonstrated that carefully selected examples can boost math performance in large language models using SFT —no huge datasets or RL procedures needed.

Their procedure allows Qwen2.5-32B-Instruct to jump from 6.5% to 57% on AIME and from 59% to 95% on MATH, while using only 1% of the data in previous approaches.

⚡ The Less-is-More Reasoning Hypothesis:
‣ Minimal but precise examples that showcase optimal reasoning patterns matter more than sheer quantity
‣ Pre-training knowledge plus sufficient computational resources at inference levels up math skills

➡️ Core techniques:
‣ High-quality reasoning chains with self-verification steps
‣ 817 handpicked problems that encourage deeper reasoning
‣ Enough inference-time computation to allow extended reasoning

💪 Efficiency gains:
‣ Only 817 examples instead of 100k+
‣ 40.5% absolute improvement across 10 diverse benchmarks, outperforming models trained on 100x more data

This really challenges the notion that SFT leads to memorization rather than generalization! And opens up reasoning to GPU-poor researchers 🚀

Read the full paper here 👉  LIMO: Less is More for Reasoning (2502.03387)
clem 
posted an update 16 days ago
view post
Post
3468
We crossed 1B+ tokens routed to inference providers partners on HF, that we released just a few days ago.

Just getting started of course but early users seem to like it & always happy to be able to partner with cool startups in the ecosystem.

Have you been using any integration and how can we make it better?

https://huggingface.co/blog/inference-providers
davanstrien 
posted an update 18 days ago
merve 
posted an update 19 days ago
view post
Post
4669
Your weekly recap of open AI is here, and it's packed with models! merve/feb-14-releases-67af876b404cc27c6d837767

👀 Multimodal
> OpenGVLab released InternVideo 2.5 Chat models, new video LMs with long context
> AIDC released Ovis2 model family along with Ovis dataset, new vision LMs in different sizes (1B, 2B, 4B, 8B, 16B, 34B), with video and OCR support
> ColQwenStella-2b is a multilingual visual retrieval model that is sota in it's size
> Hoags-2B-Exp is a new multilingual vision LM with contextual reasoning, long context video understanding

💬 LLMs
A lot of math models!
> Open-R1 team released OpenR1-Math-220k large scale math reasoning dataset, along with Qwen2.5-220K-Math fine-tuned on the dataset, OpenR1-Qwen-7B
> Nomic AI released new Nomic Embed multilingual retrieval model, a MoE with 500 params with 305M active params, outperforming other models
> DeepScaleR-1.5B-Preview is a new DeepSeek-R1-Distill fine-tune using distributed RL on math
> LIMO is a new fine-tune of Qwen2.5-32B-Instruct on Math

🗣️ Audio
> Zonos-v0.1 is a new family of speech recognition models, which contains the model itself and embeddings

🖼️ Vision and Image Generation
> We have ported DepthPro of Apple to transformers for your convenience!
> illustrious-xl-v1.0 is a new illustration generation model
·
davanstrien 
posted an update 20 days ago
view post
Post
1892
How do you make 1M+ Hugging Face models & datasets more discoverable?

davanstrien/Smol-Hub-tldr!

I fine-tuned HuggingFaceTB/SmolLM2-360M to generate one-line summaries from a model or dataset README.

Its own self-description?
"A model for generating concise summaries of model & dataset cards from the Hugging Face Hub"

The goal? Make it easier to find the right models and datasets for your specific needs. It's already powering a semantic search for datasets Space.

It's still a WIP but thanks to @loubnabnl , @anton-l , @eliebak et al, for cooking such a nice base model for fine-tuning small, efficient models for specific domains and tasks. 🙏