MiniCPM-Reranker-Light
MiniCPM-Reranker-Light 是面壁智能与清华大学自然语言处理实验室(THUNLP)、东北大学信息检索小组(NEUIR)共同开发的中英双语言文本重排序模型,有如下特点:
- 出色的中文、英文重排序能力。
- 出色的中英跨语言重排序能力。
- 支持长文本(最长8192token)。
MiniCPM-Reranker-Light 基于 MiniCPM-1B-sft-bf16 训练,结构上采取双向注意力。采取多阶段训练方式,共使用包括开源数据、机造数据、闭源数据在内的约 500 万条训练数据。
欢迎关注 UltraRAG 系列:
- 检索模型:MiniCPM-Embedding-Light
- 重排模型:MiniCPM-Reranker-Light
- 领域自适应RAG框架:UltraRAG
MiniCPM-Reranker-Light is a bilingual & cross-lingual text re-ranking model developed by ModelBest Inc. , THUNLP and NEUIR , featuring:
- Exceptional Chinese and English re-ranking capabilities.
- Outstanding cross-lingual re-ranking capabilities between Chinese and English.
- Long-text support (up to 8192 tokens).
MiniCPM-Reranker-Light is trained based on MiniCPM-1B-sft-bf16 and incorporates bidirectional attention in its architecture. The model underwent multi-stage training using approximately 6 million training examples, including open-source, synthetic, and proprietary data.
We also invite you to explore the UltraRAG series:
- Retrieval Model: MiniCPM-Embedding-Light
- Re-ranking Model: MiniCPM-Reranker-Light
- Domain Adaptive RAG Framework: UltraRAG
模型信息 Model Information
模型大小:1.2B
最大输入token数:8192
Model Size: 1.2B
Max Input Tokens: 8192
使用方法 Usage
输入格式 Input Format
本模型支持指令,输入格式如下:
MiniCPM-Reranker-Light supports instructions in the following format:
<s>Instruction: {{ instruction }} Query: {{ query }}</s>{{ document }}
例如:
For example:
<s>Instruction: 为这个医学问题检索相关回答。Query: 咽喉癌的成因是什么?</s>(文档省略)
<s>Instruction: Given a claim about climate change, retrieve documents that support or refute the claim. Query: However the warming trend is slower than most climate models have forecast.</s>(document omitted)
也可以不提供指令,即采取如下格式:
MiniCPM-Reranker-Light also works in instruction-free mode in the following format:
<s>Query: {{ query }}</s>{{ document }}
我们在BEIR与C-MTEB/Retrieval上测试时使用的指令见 instructions.json
,其他测试不使用指令。
When running evaluation on BEIR and C-MTEB/Retrieval, we use instructions in instructions.json
. For other evaluations, we do not use instructions.
环境要求 Requirements
transformers==4.37.2
示例脚本 Demo
Huggingface Transformers
from transformers import AutoModelForSequenceClassification
import torch
model_name = "OpenBMB/MiniCPM-Reranker-Light"
model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16).to("cuda")
# You can also use the following code to use flash_attention_2
# model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True,attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda")
model.eval()
query = "中国的首都是哪里?" # "Where is the capital of China?"
passages = ["beijing", "shanghai"] # 北京,上海
rerank_score = model.rerank(query, passages,query_instruction="Query:", batch_size=32, max_length=1024)
print(rerank_score) #[0.01791382 0.00024533]
sentence_pairs = [[f"Query: {query}", doc] for doc in passages]
scores = model.compute_score(sentence_pairs, batch_size=32, max_length=1024)
print(scores) #[0.01791382 0.00024533]
Sentence Transformer
from sentence_transformers import CrossEncoder
from transformers import LlamaTokenizer
import torch
model_name = "OpenBMB/MiniCPM-Reranker-Light"
model = CrossEncoder(model_name,max_length=1024,trust_remote_code=True, automodel_args={"torch_dtype": torch.float16})
# You can also use the following code to use flash_attention_2
#model = CrossEncoder(model_name,max_length=1024,trust_remote_code=True, automodel_args={"attn_implementation":"flash_attention_2","torch_dtype": torch.float16})
model.tokenizer.padding_side = "right"
query = "中国的首都是哪里?" # "Where is the capital of China?"
passages = ["beijing", "shanghai"] # 北京,上海
INSTRUCTION = "Query: "
query = INSTRUCTION + query
sentence_pairs = [[query, doc] for doc in passages]
scores = model.predict(sentence_pairs, convert_to_tensor=True).tolist()
rankings = model.rank(query, passages, return_documents=True, convert_to_tensor=True)
print(scores) # [0.017913818359375, 0.0002453327178955078]
for ranking in rankings:
print(f"Score: {ranking['score']:.4f}, Corpus: {ranking['text']}")
# Score: 0.0179, Corpus: beijing
# Score: 0.0002, Corpus: shanghai
Infinity
import asyncio
from infinity_emb import AsyncEngineArray, EngineArgs, AsyncEmbeddingEngine
query = "中国的首都是哪里?" # "What is the capital of China?"
docs = ["beijing", "shanghai"] # "北京", "上海"
INSTRUCTION = "Query:"
query = f"{INSTRUCTION} {query}"
array = AsyncEngineArray.from_args(
[EngineArgs(model_name_or_path = "OpenBMB/MiniCPM-Reranker-Light", engine="torch", dtype="float16", bettertransformer=False, trust_remote_code=True, model_warmup=False)]
)
async def rerank(engine: AsyncEmbeddingEngine):
async with engine:
ranking, usage = await engine.rerank(query=query, docs=docs)
print(list(zip(ranking, docs)))
asyncio.run(rerank(array[0])) # [(RerankReturnType(relevance_score=0.017917344, document='beijing', index=0), 'beijing'), (RerankReturnType(relevance_score=0.00024729347, document='shanghai', index=1), 'shanghai')]
FlagEmbedding
from FlagEmbedding import FlagReranker
model_name = "OpenBMB/MiniCPM-Reranker-Light"
model = FlagReranker(model_name, use_fp16=True, query_instruction_for_rerank="Query: ", trust_remote_code=True)
# You can hack the __init__() method of the FlagEmbedding BaseReranker class to use flash_attention_2 for faster inference
# self.model = AutoModelForSequenceClassification.from_pretrained(
# model_name_or_path,
# trust_remote_code=trust_remote_code,
# cache_dir=cache_dir,
# # torch_dtype=torch.float16, # we need to add this line to use fp16
# # attn_implementation="flash_attention_2", # we need to add this line to use flash_attention_2
# )
model.tokenizer.padding_side = "right"
query = "中国的首都是哪里?" # "Where is the capital of China?"
passages = ["beijing", "shanghai"] # 北京,上海
sentence_pairs = [[query, doc] for doc in passages]
scores = model.compute_score(sentence_pairs,normalize=True)
print(scores) # [0.01791734476747132, 0.0002472934613244585]
实验结果 Evaluation Results
中文与英文重排序结果 CN/EN Re-ranking Results
中文对bge-large-zh-v1.5
检索的top-100进行重排,英文对bge-large-en-v1.5
检索的top-100进行重排。
We re-rank top-100 docments from bge-large-zh-v1.5
in C-MTEB/Retrieval and from bge-large-en-v1.5
in BEIR.
模型 Model | C-MTEB/Retrieval (NDCG@10) | BEIR (NDCG@10) |
---|---|---|
bge-large-zh-v1.5(Retriever for Chinese) | 70.46 | - |
bge-large-en-v1.5(Retriever for English) | - | 54.29 |
bge-reranker-v2-m3 | 71.82 | 55.36 |
bge-reranker-v2-minicpm-28 | 73.51 | 59.86 |
bge-reranker-v2-gemma | 71.74 | 60.71 |
bge-reranker-v2.5-gemma2 | - | 63.67 |
MiniCPM-Reranker | 76.79 | 61.32 |
MiniCPM-Reranker-Light | 76.19 | 61.34 |
中英跨语言重排序结果 CN-EN Cross-lingual Re-ranking Results
对bge-m3(Dense)检索的top100进行重排。
We re-rank top-100 documents from bge-m3
(Dense).
模型 Model | MKQA En-Zh_CN (Recall@20) | NeuCLIR22 (NDCG@10) | NeuCLIR23 (NDCG@10) |
---|---|---|---|
bge-m3 (Dense)(Retriever) | 66.4 | 30.49 | 41.09 |
jina-reranker-v2-base-multilingual | 69.33 | 36.66 | 50.03 |
bge-reranker-v2-m3 | 69.75 | 40.98 | 49.67 |
gte-multilingual-reranker-base | 68.51 | 38.74 | 45.3 |
MiniCPM-Reranker | 71.73 | 43.65 | 50.59 |
MiniCPM-Reranker-Light | 71.34 | 46.04 | 51.86 |
许可证 License
- 本仓库中代码依照 Apache-2.0 协议开源。
- MiniCPM-Reranker-Light 模型权重的使用则需要遵循 MiniCPM 模型协议。
- MiniCPM-Reranker-Light 模型权重对学术研究完全开放。如需将模型用于商业用途,请填写此问卷。
- The code in this repo is released under the Apache-2.0 License.
- The usage of MiniCPM-Reranker-Light model weights must strictly follow MiniCPM Model License.md.
- The models and weights of MiniCPM-Reranker-Light are completely free for academic research. After filling out a "questionnaire" for registration, MiniCPM-Reranker-Light weights are also available for free commercial use.
- Downloads last month
- 19
Model tree for openbmb/MiniCPM-Reranker-Light
Base model
openbmb/MiniCPM-1B-sft-bf16