File size: 1,662 Bytes
ca5aa51 8c60749 ca5aa51 2bf47f9 e8869a5 2bf47f9 ca5aa51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
library_name: transformers.js
base_model: alibaba-damo/mgp-str-base
pipeline_tag: image-to-text
tags:
- ocr
---
https://huggingface.co/alibaba-damo/mgp-str-base with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
```bash
npm i @huggingface/transformers
```
**Example:** Optical Character Recognition (OCR) w/ `onnx-community/mgp-str-base`
```js
import { MgpstrForSceneTextRecognition, MgpstrProcessor, RawImage } from '@huggingface/transformers';
const model_id = 'onnx-community/mgp-str-base';
const model = await MgpstrForSceneTextRecognition.from_pretrained(model_id);
const processor = await MgpstrProcessor.from_pretrained(model_id);
// Load image from the IIIT-5k dataset
const url = "https://i.postimg.cc/ZKwLg2Gw/367-14.png";
const image = await RawImage.read(url);
// Preprocess the image
const result = await processor(image);
// Perform inference
const outputs = await model(result);
// Decode the model outputs
const generated_text = processor.batch_decode(outputs.logits).generated_text;
console.log(generated_text); // [ 'ticket' ]
```
---
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |