Xenova HF staff commited on
Commit
2bf47f9
·
verified ·
1 Parent(s): a4bd705

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -0
README.md CHANGED
@@ -5,4 +5,37 @@ base_model: alibaba-damo/mgp-str-base
5
 
6
  https://huggingface.co/alibaba-damo/mgp-str-base with ONNX weights to be compatible with Transformers.js.
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
 
5
 
6
  https://huggingface.co/alibaba-damo/mgp-str-base with ONNX weights to be compatible with Transformers.js.
7
 
8
+ ## Usage (Transformers.js)
9
+
10
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
11
+ ```bash
12
+ npm i @huggingface/transformers
13
+ ```
14
+
15
+ **Example:** Optical Character Recognition (OCR) w/ `onnx-community/mgp-str-base`
16
+
17
+ ```js
18
+ import { MgpstrForSceneTextRecognition, MgpstrProcessor, RawImage } from '@huggingface/transformers';
19
+
20
+ const model_id = 'onnx-community/mgp-str-base';
21
+ const model = await MgpstrForSceneTextRecognition.from_pretrained(model_id,);
22
+ const processor = await MgpstrProcessor.from_pretrained(model_id);
23
+
24
+ // Load image from the IIIT-5k dataset
25
+ const url = "https://i.postimg.cc/ZKwLg2Gw/367-14.png";
26
+ const image = await RawImage.read(url);
27
+
28
+ // Preprocess the image
29
+ const result = await processor(image);
30
+
31
+ // Perform inference
32
+ const outputs = await model(result);
33
+
34
+ // Decode the model outputs
35
+ const generated_text = processor.batch_decode(outputs.logits).generated_text;
36
+ console.log(generated_text); // [ 'ticket' ]
37
+ ```
38
+
39
+ ---
40
+
41
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).