onarganogun's picture
End of training
f0c9ca3 verified
metadata
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: videomae-large-kissing_14-01-2024
    results: []

videomae-large-kissing_14-01-2024

This model is a fine-tuned version of MCG-NJU/videomae-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3655
  • Accuracy: 0.9479
  • Precision: 0.9547
  • Recall: 0.9405

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 18165

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall
0.6377 0.07 1212 0.6211 0.6645 0.6755 0.6331
0.586 1.07 2424 0.4979 0.7835 0.8057 0.7471
0.3675 2.07 3636 0.3910 0.8983 0.9335 0.8579
0.8145 3.07 4848 0.3776 0.9207 0.9426 0.8959
0.6408 4.07 6060 0.3674 0.9322 0.9470 0.9157
0.01 5.07 7272 0.3630 0.9298 0.9422 0.9157
0.0274 6.07 8484 0.3808 0.9289 0.9233 0.9355
0.0002 7.07 9696 0.3566 0.9397 0.9508 0.9273
0.0058 8.07 10908 0.3609 0.9446 0.9622 0.9256
0.1551 9.07 12120 0.3757 0.9413 0.9465 0.9355
0.1784 10.07 13332 0.3410 0.9496 0.9579 0.9405
0.0011 11.07 14544 0.3707 0.9455 0.9455 0.9455
0.0001 12.07 15756 0.3719 0.9479 0.9547 0.9405
0.0307 13.07 16968 0.3657 0.9463 0.9530 0.9388
0.0002 14.07 18165 0.3655 0.9479 0.9547 0.9405

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0