|
--- |
|
language: |
|
- nl |
|
tags: |
|
- punctuation prediction |
|
- punctuation |
|
datasets: sonar |
|
license: mit |
|
widget: |
|
- text: "Ondanks dat het nu bijna voorjaar is hebben we nog steds best koude dagen" |
|
example_title: "Dutch Sample" |
|
metrics: |
|
- f1 |
|
--- |
|
|
|
This model predicts the punctuation of Dutch texts. We developed it to restore the punctuation of transcribed spoken language. |
|
|
|
This model was trained on the [SoNaR Dataset](http://hdl.handle.net/10032/tm-a2-h5). |
|
|
|
The model restores the following punctuation markers: **"." "," "?" "-" ":"** |
|
## Sample Code |
|
We provide a simple python package that allows you to process text of any length. |
|
|
|
## Install |
|
|
|
To get started install the package from [pypi](https://pypi.org/project/deepmultilingualpunctuation/): |
|
|
|
```bash |
|
pip install deepmultilingualpunctuation |
|
``` |
|
### Restore Punctuation |
|
```python |
|
from deepmultilingualpunctuation import PunctuationModel |
|
|
|
model = PunctuationModel(model="oliverguhr/fullstop-dutch-sonar-punctuation-prediction") |
|
text = "hervatting van de zitting ik verklaar de zitting van het europees parlement die op vrijdag 17 december werd onderbroken te zijn hervat" |
|
result = model.restore_punctuation(text) |
|
print(result) |
|
``` |
|
|
|
**output** |
|
> hervatting van de zitting. ik verklaar de zitting van het europees parlement, die op vrijdag 17 december werd onderbroken, te zijn hervat. |
|
|
|
|
|
### Predict Labels |
|
```python |
|
from deepmultilingualpunctuation import PunctuationModel |
|
|
|
model = PunctuationModel(model="oliverguhr/fullstop-dutch-sonar-punctuation-prediction") |
|
text = "hervatting van de zitting ik verklaar de zitting van het europees parlement die op vrijdag 17 december werd onderbroken te zijn hervat" |
|
clean_text = model.preprocess(text) |
|
labled_words = model.predict(clean_text) |
|
print(labled_words) |
|
``` |
|
|
|
**output** |
|
|
|
> [['hervatting', '0', 0.99998724], ['van', '0', 0.9999784], ['de', '0', 0.99991274], ['zitting', '.', 0.6771242], ['ik', '0', 0.9999466], ['verklaar', '0', 0.9998566], ['de', '0', 0.9999783], ['zitting', '0', 0.9999809], ['van', '0', 0.99996245], ['het', '0', 0.99997795], ['europees', '0', 0.9999783], ['parlement', ',', 0.9908242], ['die', '0', 0.999985], ['op', '0', 0.99998224], ['vrijdag', '0', 0.9999831], ['17', '0', 0.99997985], ['december', '0', 0.9999827], ['werd', '0', 0.999982], ['onderbroken', ',', 0.9951485], ['te', '0', 0.9999677], ['zijn', '0', 0.99997723], ['hervat', '.', 0.9957053]] |
|
|
|
|
|
|
|
|
|
## Results |
|
|
|
The performance differs for the single punctuation markers as hyphens and colons, in many cases, are optional and can be substituted by either a comma or a full stop. The model achieves the following F1 scores: |
|
|
|
| Label | F1 Score | |
|
| ------------- | -------- | |
|
| 0 | 0.985816 | |
|
| . | 0.854380 | |
|
| ? | 0.684060 | |
|
| , | 0.719308 | |
|
| : | 0.696088 | |
|
| - | 0.722000 | |
|
| macro average | 0.776942 | |
|
| micro average | 0.963427 | |
|
|
|
## Languages |
|
|
|
### Models |
|
|
|
| Languages | Model | |
|
| ------------------------------------------ | ------------------------------------------------------------ | |
|
| English, Italian, French and German | [oliverguhr/fullstop-punctuation-multilang-large](https://huggingface.co/oliverguhr/fullstop-punctuation-multilang-large) | |
|
| English, Italian, French, German and Dutch | [oliverguhr/fullstop-punctuation-multilingual-sonar-base](https://huggingface.co/oliverguhr/fullstop-punctuation-multilingual-sonar-base) | |
|
| Dutch | [oliverguhr/fullstop-dutch-sonar-punctuation-prediction](https://huggingface.co/oliverguhr/fullstop-dutch-sonar-punctuation-prediction) | |
|
|
|
### Community Models |
|
|
|
| Languages | Model | |
|
| ------------------------------------------ | ------------------------------------------------------------ | |
|
|English, German, French, Spanish, Bulgarian, Italian, Polish, Dutch, Czech, Portugese, Slovak, Slovenian| [kredor/punctuate-all](https://huggingface.co/kredor/punctuate-all) | |
|
| Catalan | [softcatala/fullstop-catalan-punctuation-prediction](https://huggingface.co/softcatala/fullstop-catalan-punctuation-prediction) | |
|
|
|
You can use different models by setting the model parameter: |
|
|
|
```python |
|
model = PunctuationModel(model = "oliverguhr/fullstop-dutch-punctuation-prediction") |
|
``` |
|
|
|
|
|
## How to cite us |
|
|
|
``` |
|
@misc{https://doi.org/10.48550/arxiv.2301.03319, |
|
doi = {10.48550/ARXIV.2301.03319}, |
|
url = {https://arxiv.org/abs/2301.03319}, |
|
author = {Vandeghinste, Vincent and Guhr, Oliver}, |
|
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences, I.2.7}, |
|
title = {FullStop:Punctuation and Segmentation Prediction for Dutch with Transformers}, |
|
publisher = {arXiv}, |
|
year = {2023}, |
|
copyright = {Creative Commons Attribution Share Alike 4.0 International} |
|
} |
|
|
|
``` |
|
|
|
|