layoutlmv3-finetuned-cord_100

This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9357
  • Precision: 0.5961
  • Recall: 0.6826
  • F1: 0.6364
  • Accuracy: 0.6846

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 250.0 250 1.5298 0.5778 0.6781 0.6240 0.6825
0.6654 500.0 500 1.6175 0.5942 0.6849 0.6363 0.6880
0.6654 750.0 750 1.7087 0.5947 0.6841 0.6363 0.6876
0.0208 1000.0 1000 1.7729 0.5948 0.6834 0.6360 0.6859
0.0208 1250.0 1250 1.8273 0.5949 0.6826 0.6358 0.6851
0.0099 1500.0 1500 1.8693 0.5957 0.6826 0.6362 0.6846
0.0099 1750.0 1750 1.8969 0.5950 0.6819 0.6355 0.6842
0.0066 2000.0 2000 1.9196 0.5972 0.6826 0.6371 0.6842
0.0066 2250.0 2250 1.9312 0.5946 0.6819 0.6353 0.6838
0.0054 2500.0 2500 1.9357 0.5961 0.6826 0.6364 0.6846

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for okigan/layoutlmv3-finetuned-cord_100

Finetuned
(223)
this model

Evaluation results