|
# Qwen2-1.5B-Finetuned |
|
|
|
## Training details |
|
datasets: |
|
<pre> |
|
- alpaca-gpt4_cleaned-qwen2-train.jsonl |
|
- alpaca-gpt4_cleaned-qwen2-val.jsonl |
|
- xlam-dataset-60k-qwen2-train.jsonl |
|
- xlam-dataset-60k-qwen2-val.jsonl |
|
* 9/1 train/eval ratio. |
|
</pre> |
|
|
|
## Quickstart |
|
|
|
### utils for user content. |
|
- replace [TRIPLE_BACKTICK] to ``` |
|
|
|
```python |
|
xlam_system = ( |
|
"You are an AI assistant for function calling. " |
|
"For politically sensitive questions, security and privacy issues, " |
|
"and other non-computer science questions, you will refuse to answer" |
|
) |
|
|
|
def to_xlam_tools(tools:list|dict): |
|
if not isinstance(tools, list): tools = [tools] |
|
xlam_tools = [] |
|
for tool in tools: |
|
assert isinstance(tool, dict) |
|
xlam_tools.append( { |
|
"name": tools["name"], |
|
"description": tools["description"], |
|
"parameters": {k: v for k, v in tools["parameters"].get("properties", {}).items()} |
|
}) |
|
return xlam_tools |
|
|
|
TASK_INSTRUCTION = '''You are an expert in composing functions. You are given a question and a set of possible functions. |
|
Based on the question, you will need to make one or more function/tool calls to achieve the purpose. |
|
If none of the functions can be used, point it out and refuse to answer. |
|
If the given question lacks the parameters required by the function, fill the parameters as None.''' |
|
|
|
FORMAT_INSTRUCTION = '''The output MUST strictly adhere to the following JSON format, and NO other text MUST be included. |
|
The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make tool_calls an empty list '[]'. |
|
[TRIPLE_BACKTICK] |
|
{ "tool_calls": [ |
|
{"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}}, |
|
... (more tool calls as required) |
|
] } |
|
[TRIPLE_BACKTICK] |
|
''' |
|
|
|
def get_prompt(xlam_tools:list|dict, query:str ): |
|
if not isinstance(xlam_tools, str): xlam_tools = json.dumps(xlam_tools) |
|
prompt = f"<instruction>\n{TASK_INSTRUCTION}\n</instruction>\n\n" |
|
prompt += f"<available tools>\n{xlam_tools}\n</available tools>\n\n" |
|
prompt += f"<tool format>\n{FORMAT_INSTRUCTION}\n</tool format>\n\n" |
|
prompt += f"<query>\n{query.strip()}\n<query>\n\n" |
|
return prompt |
|
|
|
``` |
|
|
|
### inference |
|
- replace [TRIPLE_BACKTICK] to ``` |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
user_msg = '''<instruction> |
|
You are an expert in composing functions. You are given a question and a set of possible functions. |
|
Based on the question, you will need to make one or more function/tool calls to achieve the purpose. |
|
If none of the functions can be used, point it out and refuse to answer. |
|
If the given question lacks the parameters required by the function, fill the parameters as None. |
|
</instruction> |
|
|
|
<available tools> |
|
[{"name": "messages_from_telegram_channel", "description": "Fetches the last 10 messages or a specific message from a given public Telegram channel.", "parameters": {"channel": {"description": "The @username of the public Telegram channel.", "type": "str", "default": "telegram"}, "idmessage": {"description": "The ID of a specific message to retrieve. If not provided, the function will return the last 10 messages.", "type": "str, optional", "default": ""}}}, {"name": "shopify", "description": "Checks the availability of a given username on Shopify using the Toolbench RapidAPI.", "parameters": {"username": {"description": "The username to check for availability on Shopify.", "type": "str", "default": "username"}}}, {"name": "generate_a_face", "description": "Generates a face image using an AI service and returns the result as a JSON object or text. It utilizes the Toolbench RapidAPI service.", "parameters": {"ai": {"description": "The AI model identifier to be used for face generation.", "type": "str", "default": "1"}}}] |
|
</available tools> |
|
|
|
<tool format> |
|
The output MUST strictly adhere to the following JSON format, and NO other text MUST be included. |
|
The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make tool_calls an empty list '[]'. |
|
[TRIPLE_BACKTICK] |
|
{ "tool_calls": [ |
|
{"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}}, |
|
... (more tool calls as required) |
|
] } |
|
[TRIPLE_BACKTICK] |
|
</tool format> |
|
|
|
<query> |
|
Check if the username 'ShopMaster123' is available on Shopify. |
|
</query>''' |
|
|
|
messages = [dict(role='user', content=user_msg)] |
|
label = { "tool_calls": [{"name": "shopify", "arguments": {"username": "ShopMaster123"}}] } |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
"objects76/qwen2-xlam", trust_remote_code=True) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"objects76/qwen2-xlam", trust_remote_code=True, |
|
torch_dtype="auto", |
|
device_map="cuda", |
|
) |
|
model.config.use_cache = True |
|
model.eval() |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=True, |
|
add_generation_prompt=True, |
|
max_length=tokenizer.model_max_length, |
|
padding=False, truncation=True, |
|
return_tensors='pt', |
|
).to(model.device) |
|
|
|
outputs = model.generate( |
|
input_ids = input_ids, # attention_mask=attention_mask, |
|
max_new_tokens=1024, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.pad_token_id, |
|
# do_sample=True, temperature=0.01, top_p= 0.01, |
|
use_cache=True) |
|
|
|
response = tokenizer.decode(outputs[0, input_ids.shape[-1]:], skip_special_tokens=True) |
|
print('response=', response) |
|
print('label=', label) |
|
``` |
|
|
|
|
|
### few-shot |
|
```python |
|
|
|
system = ('Your task is to extract specific information from the given text.' |
|
' Please provide the requested information in the format shown in the examples below.' |
|
) |
|
|
|
fewshot_example = '''\ |
|
Example 1: |
|
Text: John Smith is a 35-year-old software engineer from New York. He has been working at TechCorp for 5 years. |
|
Name: John Smith |
|
Age: 35 |
|
Occupation: Software Engineer |
|
Location: New York |
|
Company: TechCorp |
|
Years of Experience: 5 |
|
|
|
Example 2: |
|
Text: Sarah Johnson, a 28-year-old marketing specialist, recently moved to San Francisco to join StartupX as their new Head of Marketing. |
|
Name: Sarah Johnson |
|
Age: 28 |
|
Occupation: Marketing Specialist |
|
Location: San Francisco |
|
Company: StartupX |
|
Position: Head of Marketing |
|
|
|
Now, extract the information from the following text: |
|
Text: Michael Brown, 42, is a senior data scientist at DataInc in Chicago. He has been in the field for over a decade and specializes in machine learning algorithms. |
|
''' |
|
|
|
answer_from_gpt = '''\ |
|
Name: Michael Brown |
|
Age: 42 |
|
Occupation: Senior Data Scientist |
|
Location: Chicago |
|
Company: DataInc |
|
Years of Experience: Over a decade |
|
Specialization: Machine Learning Algorithms |
|
''' |
|
|
|
messages = [ |
|
{"role": "system", "content": system.strip()}, |
|
{"role": "user", "content": fewshot_example.strip()}, |
|
] |
|
``` |
|
|
|
|
|
|