oandreae's picture
update model card README.md
2c1f91c
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - financial_phrasebank
metrics:
  - recall
  - accuracy
  - precision
model-index:
  - name: financial_sentiment_model
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: financial_phrasebank
          type: financial_phrasebank
          args: sentences_50agree
        metrics:
          - name: Recall
            type: recall
            value: 0.8839956357328868
          - name: Accuracy
            type: accuracy
            value: 0.8804123711340206
          - name: Precision
            type: precision
            value: 0.8604175202419276

financial_sentiment_model

This model is a fine-tuned version of deepmind/language-perceiver on the financial_phrasebank dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3467
  • Recall: 0.8840
  • Accuracy: 0.8804
  • Precision: 0.8604

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: tpu
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Recall Accuracy Precision
0.4481 1.0 273 0.4035 0.8526 0.8433 0.7955
0.4069 2.0 546 0.4478 0.8683 0.8289 0.8123
0.2225 3.0 819 0.3167 0.8747 0.8680 0.8387
0.1245 4.0 1092 0.3467 0.8840 0.8804 0.8604

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.9.0+cu102
  • Datasets 1.17.0
  • Tokenizers 0.10.3