nzm97's picture
Initial model push after training
64d6f69 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-large-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: math_question_grade_detection_v2
    results: []

math_question_grade_detection_v2

This model is a fine-tuned version of google-bert/bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1410
  • Accuracy: 0.1591
  • Precision: 0.0253
  • Recall: 0.1591
  • F1: 0.0437

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 850

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0.0683 50 2.0313 0.2237 0.0856 0.2237 0.1038
No log 0.1366 100 2.2165 0.1337 0.0179 0.1337 0.0316
No log 0.2049 150 2.1366 0.1722 0.0296 0.1722 0.0506
No log 0.2732 200 2.1438 0.1722 0.0296 0.1722 0.0506
No log 0.3415 250 2.1389 0.1591 0.0253 0.1591 0.0437
No log 0.4098 300 2.1450 0.1722 0.0296 0.1722 0.0506
No log 0.4781 350 2.1456 0.1722 0.0296 0.1722 0.0506
No log 0.5464 400 2.1396 0.1722 0.0296 0.1722 0.0506
No log 0.6148 450 2.1349 0.1722 0.0296 0.1722 0.0506
2.1632 0.6831 500 2.1392 0.1591 0.0253 0.1591 0.0437
2.1632 0.7514 550 2.1391 0.1722 0.0296 0.1722 0.0506
2.1632 0.8197 600 2.1391 0.1591 0.0253 0.1591 0.0437
2.1632 0.8880 650 2.1360 0.1722 0.0296 0.1722 0.0506
2.1632 0.9563 700 2.1366 0.1722 0.0296 0.1722 0.0506
2.1632 1.0246 750 2.1388 0.1591 0.0253 0.1591 0.0437
2.1632 1.0929 800 2.1410 0.1591 0.0253 0.1591 0.0437
2.1632 1.1612 850 2.1410 0.1591 0.0253 0.1591 0.0437

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.2.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0