math_question_grade_detection_v12-15-24_v2
This model is a fine-tuned version of allenai/scibert_scivocab_uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7833
- Accuracy: 0.8156
- Precision: 0.8202
- Recall: 0.8156
- F1: 0.8150
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 0.0855 | 50 | 3.7362 | 0.0451 | 0.0376 | 0.0451 | 0.0314 |
No log | 0.1709 | 100 | 3.5268 | 0.1037 | 0.0640 | 0.1037 | 0.0240 |
No log | 0.2564 | 150 | 3.2696 | 0.1374 | 0.0502 | 0.1374 | 0.0535 |
No log | 0.3419 | 200 | 3.0470 | 0.1748 | 0.1029 | 0.1748 | 0.0859 |
No log | 0.4274 | 250 | 2.8364 | 0.2113 | 0.1981 | 0.2113 | 0.1345 |
No log | 0.5128 | 300 | 2.5545 | 0.3631 | 0.3303 | 0.3631 | 0.2989 |
No log | 0.5983 | 350 | 2.3118 | 0.4025 | 0.3901 | 0.4025 | 0.3347 |
No log | 0.6838 | 400 | 2.1470 | 0.4207 | 0.4281 | 0.4207 | 0.3816 |
No log | 0.7692 | 450 | 1.9231 | 0.4784 | 0.4605 | 0.4784 | 0.4348 |
2.8424 | 0.8547 | 500 | 1.7209 | 0.5235 | 0.4724 | 0.5235 | 0.4737 |
2.8424 | 0.9402 | 550 | 1.6283 | 0.5370 | 0.5227 | 0.5370 | 0.5033 |
2.8424 | 1.0256 | 600 | 1.5094 | 0.5648 | 0.5333 | 0.5648 | 0.5175 |
2.8424 | 1.1111 | 650 | 1.4568 | 0.5783 | 0.5770 | 0.5783 | 0.5429 |
2.8424 | 1.1966 | 700 | 1.4039 | 0.5821 | 0.5773 | 0.5821 | 0.5475 |
2.8424 | 1.2821 | 750 | 1.2911 | 0.6244 | 0.6001 | 0.6244 | 0.5936 |
2.8424 | 1.3675 | 800 | 1.2526 | 0.6263 | 0.5988 | 0.6263 | 0.5948 |
2.8424 | 1.4530 | 850 | 1.2468 | 0.6427 | 0.6255 | 0.6427 | 0.6183 |
2.8424 | 1.5385 | 900 | 1.1799 | 0.6427 | 0.6107 | 0.6427 | 0.6182 |
2.8424 | 1.6239 | 950 | 1.1391 | 0.6695 | 0.6347 | 0.6695 | 0.6395 |
1.3882 | 1.7094 | 1000 | 1.1030 | 0.6571 | 0.6434 | 0.6571 | 0.6253 |
1.3882 | 1.7949 | 1050 | 1.1132 | 0.6580 | 0.6580 | 0.6580 | 0.6328 |
1.3882 | 1.8803 | 1100 | 1.0407 | 0.6888 | 0.6613 | 0.6888 | 0.6648 |
1.3882 | 1.9658 | 1150 | 1.0152 | 0.6840 | 0.6513 | 0.6840 | 0.6563 |
1.3882 | 2.0513 | 1200 | 0.9474 | 0.7089 | 0.6872 | 0.7089 | 0.6870 |
1.3882 | 2.1368 | 1250 | 0.9445 | 0.7185 | 0.7093 | 0.7185 | 0.7004 |
1.3882 | 2.2222 | 1300 | 0.9189 | 0.7147 | 0.7058 | 0.7147 | 0.7004 |
1.3882 | 2.3077 | 1350 | 0.9597 | 0.7137 | 0.7012 | 0.7137 | 0.6969 |
1.3882 | 2.3932 | 1400 | 0.9233 | 0.7214 | 0.7081 | 0.7214 | 0.7062 |
1.3882 | 2.4786 | 1450 | 0.9196 | 0.7214 | 0.7270 | 0.7214 | 0.7017 |
0.8711 | 2.5641 | 1500 | 0.9337 | 0.7070 | 0.7023 | 0.7070 | 0.6888 |
0.8711 | 2.6496 | 1550 | 0.8891 | 0.7157 | 0.7171 | 0.7157 | 0.7064 |
0.8711 | 2.7350 | 1600 | 0.8567 | 0.7387 | 0.7400 | 0.7387 | 0.7279 |
0.8711 | 2.8205 | 1650 | 0.8473 | 0.7358 | 0.7364 | 0.7358 | 0.7237 |
0.8711 | 2.9060 | 1700 | 0.8563 | 0.7387 | 0.7335 | 0.7387 | 0.7289 |
0.8711 | 2.9915 | 1750 | 0.8892 | 0.7262 | 0.7270 | 0.7262 | 0.7141 |
0.8711 | 3.0769 | 1800 | 0.8978 | 0.7253 | 0.7286 | 0.7253 | 0.7148 |
0.8711 | 3.1624 | 1850 | 0.8036 | 0.7570 | 0.7526 | 0.7570 | 0.7466 |
0.8711 | 3.2479 | 1900 | 0.8240 | 0.7570 | 0.7602 | 0.7570 | 0.7489 |
0.8711 | 3.3333 | 1950 | 0.8134 | 0.7560 | 0.7540 | 0.7560 | 0.7478 |
0.6038 | 3.4188 | 2000 | 0.7952 | 0.7618 | 0.7652 | 0.7618 | 0.7542 |
0.6038 | 3.5043 | 2050 | 0.7927 | 0.7618 | 0.7591 | 0.7618 | 0.7536 |
0.6038 | 3.5897 | 2100 | 0.8155 | 0.7445 | 0.7520 | 0.7445 | 0.7349 |
0.6038 | 3.6752 | 2150 | 0.7881 | 0.7598 | 0.7659 | 0.7598 | 0.7523 |
0.6038 | 3.7607 | 2200 | 0.7905 | 0.7560 | 0.7639 | 0.7560 | 0.7461 |
0.6038 | 3.8462 | 2250 | 0.8357 | 0.7598 | 0.7666 | 0.7598 | 0.7531 |
0.6038 | 3.9316 | 2300 | 0.7636 | 0.7733 | 0.7696 | 0.7733 | 0.7662 |
0.6038 | 4.0171 | 2350 | 0.7556 | 0.7781 | 0.7816 | 0.7781 | 0.7712 |
0.6038 | 4.1026 | 2400 | 0.7696 | 0.7704 | 0.7795 | 0.7704 | 0.7664 |
0.6038 | 4.1880 | 2450 | 0.7992 | 0.7733 | 0.7811 | 0.7733 | 0.7676 |
0.3965 | 4.2735 | 2500 | 0.7492 | 0.7733 | 0.7679 | 0.7733 | 0.7657 |
0.3965 | 4.3590 | 2550 | 0.7900 | 0.7695 | 0.7725 | 0.7695 | 0.7649 |
0.3965 | 4.4444 | 2600 | 0.7793 | 0.7733 | 0.7815 | 0.7733 | 0.7679 |
0.3965 | 4.5299 | 2650 | 0.7863 | 0.7771 | 0.7799 | 0.7771 | 0.7720 |
0.3965 | 4.6154 | 2700 | 0.8007 | 0.7723 | 0.7793 | 0.7723 | 0.7662 |
0.3965 | 4.7009 | 2750 | 0.7483 | 0.7829 | 0.7875 | 0.7829 | 0.7791 |
0.3965 | 4.7863 | 2800 | 0.7696 | 0.7848 | 0.7905 | 0.7848 | 0.7785 |
0.3965 | 4.8718 | 2850 | 0.7667 | 0.7848 | 0.7956 | 0.7848 | 0.7809 |
0.3965 | 4.9573 | 2900 | 0.7565 | 0.7848 | 0.7871 | 0.7848 | 0.7793 |
0.3965 | 5.0427 | 2950 | 0.7566 | 0.7877 | 0.7890 | 0.7877 | 0.7840 |
0.2703 | 5.1282 | 3000 | 0.7573 | 0.7839 | 0.7876 | 0.7839 | 0.7802 |
0.2703 | 5.2137 | 3050 | 0.7797 | 0.7685 | 0.7719 | 0.7685 | 0.7644 |
0.2703 | 5.2991 | 3100 | 0.7606 | 0.7791 | 0.7817 | 0.7791 | 0.7753 |
0.2703 | 5.3846 | 3150 | 0.7584 | 0.7867 | 0.7857 | 0.7867 | 0.7815 |
0.2703 | 5.4701 | 3200 | 0.7527 | 0.7887 | 0.7910 | 0.7887 | 0.7852 |
0.2703 | 5.5556 | 3250 | 0.7797 | 0.7877 | 0.7957 | 0.7877 | 0.7844 |
0.2703 | 5.6410 | 3300 | 0.8015 | 0.7800 | 0.7824 | 0.7800 | 0.7739 |
0.2703 | 5.7265 | 3350 | 0.7943 | 0.7858 | 0.7882 | 0.7858 | 0.7810 |
0.2703 | 5.8120 | 3400 | 0.7874 | 0.7915 | 0.7931 | 0.7915 | 0.7870 |
0.2703 | 5.8974 | 3450 | 0.7851 | 0.7925 | 0.7985 | 0.7925 | 0.7897 |
0.1707 | 5.9829 | 3500 | 0.7383 | 0.8069 | 0.8140 | 0.8069 | 0.8067 |
0.1707 | 6.0684 | 3550 | 0.7344 | 0.8060 | 0.8101 | 0.8060 | 0.8036 |
0.1707 | 6.1538 | 3600 | 0.7723 | 0.7935 | 0.7962 | 0.7935 | 0.7883 |
0.1707 | 6.2393 | 3650 | 0.7735 | 0.7906 | 0.7919 | 0.7906 | 0.7864 |
0.1707 | 6.3248 | 3700 | 0.7593 | 0.8031 | 0.8047 | 0.8031 | 0.7987 |
0.1707 | 6.4103 | 3750 | 0.7781 | 0.7992 | 0.8008 | 0.7992 | 0.7949 |
0.1707 | 6.4957 | 3800 | 0.7867 | 0.8021 | 0.8026 | 0.8021 | 0.7975 |
0.1707 | 6.5812 | 3850 | 0.7842 | 0.8002 | 0.8054 | 0.8002 | 0.7973 |
0.1707 | 6.6667 | 3900 | 0.8035 | 0.7867 | 0.7888 | 0.7867 | 0.7829 |
0.1707 | 6.7521 | 3950 | 0.7807 | 0.8012 | 0.8023 | 0.8012 | 0.7969 |
0.1045 | 6.8376 | 4000 | 0.7740 | 0.8021 | 0.8065 | 0.8021 | 0.7989 |
0.1045 | 6.9231 | 4050 | 0.7801 | 0.7983 | 0.8011 | 0.7983 | 0.7934 |
0.1045 | 7.0085 | 4100 | 0.7776 | 0.8060 | 0.8111 | 0.8060 | 0.8035 |
0.1045 | 7.0940 | 4150 | 0.7856 | 0.8002 | 0.8056 | 0.8002 | 0.7973 |
0.1045 | 7.1795 | 4200 | 0.7664 | 0.8156 | 0.8201 | 0.8156 | 0.8138 |
0.1045 | 7.2650 | 4250 | 0.7835 | 0.8060 | 0.8062 | 0.8060 | 0.8015 |
0.1045 | 7.3504 | 4300 | 0.7774 | 0.8031 | 0.8033 | 0.8031 | 0.7994 |
0.1045 | 7.4359 | 4350 | 0.7855 | 0.8060 | 0.8078 | 0.8060 | 0.8025 |
0.1045 | 7.5214 | 4400 | 0.7852 | 0.8060 | 0.8073 | 0.8060 | 0.8029 |
0.1045 | 7.6068 | 4450 | 0.7848 | 0.8021 | 0.8031 | 0.8021 | 0.7991 |
0.0725 | 7.6923 | 4500 | 0.7882 | 0.8050 | 0.8118 | 0.8050 | 0.8028 |
0.0725 | 7.7778 | 4550 | 0.7846 | 0.8088 | 0.8149 | 0.8088 | 0.8070 |
0.0725 | 7.8632 | 4600 | 0.7864 | 0.8136 | 0.8185 | 0.8136 | 0.8121 |
0.0725 | 7.9487 | 4650 | 0.7845 | 0.8156 | 0.8213 | 0.8156 | 0.8147 |
0.0725 | 8.0342 | 4700 | 0.7802 | 0.8156 | 0.8207 | 0.8156 | 0.8146 |
0.0725 | 8.1197 | 4750 | 0.7867 | 0.8184 | 0.8241 | 0.8184 | 0.8174 |
0.0725 | 8.2051 | 4800 | 0.7861 | 0.8165 | 0.8217 | 0.8165 | 0.8155 |
0.0725 | 8.2906 | 4850 | 0.7871 | 0.8165 | 0.8217 | 0.8165 | 0.8163 |
0.0725 | 8.3761 | 4900 | 0.7848 | 0.8175 | 0.8223 | 0.8175 | 0.8171 |
0.0725 | 8.4615 | 4950 | 0.7835 | 0.8156 | 0.8203 | 0.8156 | 0.8149 |
0.0504 | 8.5470 | 5000 | 0.7833 | 0.8156 | 0.8202 | 0.8156 | 0.8150 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 21
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for nzm97/math_question_grade_detection_v12-15-24_v2
Base model
allenai/scibert_scivocab_uncased