math_question_grade_detection_v12-15-24_v2

This model is a fine-tuned version of allenai/scibert_scivocab_uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7833
  • Accuracy: 0.8156
  • Precision: 0.8202
  • Recall: 0.8156
  • F1: 0.8150

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0.0855 50 3.7362 0.0451 0.0376 0.0451 0.0314
No log 0.1709 100 3.5268 0.1037 0.0640 0.1037 0.0240
No log 0.2564 150 3.2696 0.1374 0.0502 0.1374 0.0535
No log 0.3419 200 3.0470 0.1748 0.1029 0.1748 0.0859
No log 0.4274 250 2.8364 0.2113 0.1981 0.2113 0.1345
No log 0.5128 300 2.5545 0.3631 0.3303 0.3631 0.2989
No log 0.5983 350 2.3118 0.4025 0.3901 0.4025 0.3347
No log 0.6838 400 2.1470 0.4207 0.4281 0.4207 0.3816
No log 0.7692 450 1.9231 0.4784 0.4605 0.4784 0.4348
2.8424 0.8547 500 1.7209 0.5235 0.4724 0.5235 0.4737
2.8424 0.9402 550 1.6283 0.5370 0.5227 0.5370 0.5033
2.8424 1.0256 600 1.5094 0.5648 0.5333 0.5648 0.5175
2.8424 1.1111 650 1.4568 0.5783 0.5770 0.5783 0.5429
2.8424 1.1966 700 1.4039 0.5821 0.5773 0.5821 0.5475
2.8424 1.2821 750 1.2911 0.6244 0.6001 0.6244 0.5936
2.8424 1.3675 800 1.2526 0.6263 0.5988 0.6263 0.5948
2.8424 1.4530 850 1.2468 0.6427 0.6255 0.6427 0.6183
2.8424 1.5385 900 1.1799 0.6427 0.6107 0.6427 0.6182
2.8424 1.6239 950 1.1391 0.6695 0.6347 0.6695 0.6395
1.3882 1.7094 1000 1.1030 0.6571 0.6434 0.6571 0.6253
1.3882 1.7949 1050 1.1132 0.6580 0.6580 0.6580 0.6328
1.3882 1.8803 1100 1.0407 0.6888 0.6613 0.6888 0.6648
1.3882 1.9658 1150 1.0152 0.6840 0.6513 0.6840 0.6563
1.3882 2.0513 1200 0.9474 0.7089 0.6872 0.7089 0.6870
1.3882 2.1368 1250 0.9445 0.7185 0.7093 0.7185 0.7004
1.3882 2.2222 1300 0.9189 0.7147 0.7058 0.7147 0.7004
1.3882 2.3077 1350 0.9597 0.7137 0.7012 0.7137 0.6969
1.3882 2.3932 1400 0.9233 0.7214 0.7081 0.7214 0.7062
1.3882 2.4786 1450 0.9196 0.7214 0.7270 0.7214 0.7017
0.8711 2.5641 1500 0.9337 0.7070 0.7023 0.7070 0.6888
0.8711 2.6496 1550 0.8891 0.7157 0.7171 0.7157 0.7064
0.8711 2.7350 1600 0.8567 0.7387 0.7400 0.7387 0.7279
0.8711 2.8205 1650 0.8473 0.7358 0.7364 0.7358 0.7237
0.8711 2.9060 1700 0.8563 0.7387 0.7335 0.7387 0.7289
0.8711 2.9915 1750 0.8892 0.7262 0.7270 0.7262 0.7141
0.8711 3.0769 1800 0.8978 0.7253 0.7286 0.7253 0.7148
0.8711 3.1624 1850 0.8036 0.7570 0.7526 0.7570 0.7466
0.8711 3.2479 1900 0.8240 0.7570 0.7602 0.7570 0.7489
0.8711 3.3333 1950 0.8134 0.7560 0.7540 0.7560 0.7478
0.6038 3.4188 2000 0.7952 0.7618 0.7652 0.7618 0.7542
0.6038 3.5043 2050 0.7927 0.7618 0.7591 0.7618 0.7536
0.6038 3.5897 2100 0.8155 0.7445 0.7520 0.7445 0.7349
0.6038 3.6752 2150 0.7881 0.7598 0.7659 0.7598 0.7523
0.6038 3.7607 2200 0.7905 0.7560 0.7639 0.7560 0.7461
0.6038 3.8462 2250 0.8357 0.7598 0.7666 0.7598 0.7531
0.6038 3.9316 2300 0.7636 0.7733 0.7696 0.7733 0.7662
0.6038 4.0171 2350 0.7556 0.7781 0.7816 0.7781 0.7712
0.6038 4.1026 2400 0.7696 0.7704 0.7795 0.7704 0.7664
0.6038 4.1880 2450 0.7992 0.7733 0.7811 0.7733 0.7676
0.3965 4.2735 2500 0.7492 0.7733 0.7679 0.7733 0.7657
0.3965 4.3590 2550 0.7900 0.7695 0.7725 0.7695 0.7649
0.3965 4.4444 2600 0.7793 0.7733 0.7815 0.7733 0.7679
0.3965 4.5299 2650 0.7863 0.7771 0.7799 0.7771 0.7720
0.3965 4.6154 2700 0.8007 0.7723 0.7793 0.7723 0.7662
0.3965 4.7009 2750 0.7483 0.7829 0.7875 0.7829 0.7791
0.3965 4.7863 2800 0.7696 0.7848 0.7905 0.7848 0.7785
0.3965 4.8718 2850 0.7667 0.7848 0.7956 0.7848 0.7809
0.3965 4.9573 2900 0.7565 0.7848 0.7871 0.7848 0.7793
0.3965 5.0427 2950 0.7566 0.7877 0.7890 0.7877 0.7840
0.2703 5.1282 3000 0.7573 0.7839 0.7876 0.7839 0.7802
0.2703 5.2137 3050 0.7797 0.7685 0.7719 0.7685 0.7644
0.2703 5.2991 3100 0.7606 0.7791 0.7817 0.7791 0.7753
0.2703 5.3846 3150 0.7584 0.7867 0.7857 0.7867 0.7815
0.2703 5.4701 3200 0.7527 0.7887 0.7910 0.7887 0.7852
0.2703 5.5556 3250 0.7797 0.7877 0.7957 0.7877 0.7844
0.2703 5.6410 3300 0.8015 0.7800 0.7824 0.7800 0.7739
0.2703 5.7265 3350 0.7943 0.7858 0.7882 0.7858 0.7810
0.2703 5.8120 3400 0.7874 0.7915 0.7931 0.7915 0.7870
0.2703 5.8974 3450 0.7851 0.7925 0.7985 0.7925 0.7897
0.1707 5.9829 3500 0.7383 0.8069 0.8140 0.8069 0.8067
0.1707 6.0684 3550 0.7344 0.8060 0.8101 0.8060 0.8036
0.1707 6.1538 3600 0.7723 0.7935 0.7962 0.7935 0.7883
0.1707 6.2393 3650 0.7735 0.7906 0.7919 0.7906 0.7864
0.1707 6.3248 3700 0.7593 0.8031 0.8047 0.8031 0.7987
0.1707 6.4103 3750 0.7781 0.7992 0.8008 0.7992 0.7949
0.1707 6.4957 3800 0.7867 0.8021 0.8026 0.8021 0.7975
0.1707 6.5812 3850 0.7842 0.8002 0.8054 0.8002 0.7973
0.1707 6.6667 3900 0.8035 0.7867 0.7888 0.7867 0.7829
0.1707 6.7521 3950 0.7807 0.8012 0.8023 0.8012 0.7969
0.1045 6.8376 4000 0.7740 0.8021 0.8065 0.8021 0.7989
0.1045 6.9231 4050 0.7801 0.7983 0.8011 0.7983 0.7934
0.1045 7.0085 4100 0.7776 0.8060 0.8111 0.8060 0.8035
0.1045 7.0940 4150 0.7856 0.8002 0.8056 0.8002 0.7973
0.1045 7.1795 4200 0.7664 0.8156 0.8201 0.8156 0.8138
0.1045 7.2650 4250 0.7835 0.8060 0.8062 0.8060 0.8015
0.1045 7.3504 4300 0.7774 0.8031 0.8033 0.8031 0.7994
0.1045 7.4359 4350 0.7855 0.8060 0.8078 0.8060 0.8025
0.1045 7.5214 4400 0.7852 0.8060 0.8073 0.8060 0.8029
0.1045 7.6068 4450 0.7848 0.8021 0.8031 0.8021 0.7991
0.0725 7.6923 4500 0.7882 0.8050 0.8118 0.8050 0.8028
0.0725 7.7778 4550 0.7846 0.8088 0.8149 0.8088 0.8070
0.0725 7.8632 4600 0.7864 0.8136 0.8185 0.8136 0.8121
0.0725 7.9487 4650 0.7845 0.8156 0.8213 0.8156 0.8147
0.0725 8.0342 4700 0.7802 0.8156 0.8207 0.8156 0.8146
0.0725 8.1197 4750 0.7867 0.8184 0.8241 0.8184 0.8174
0.0725 8.2051 4800 0.7861 0.8165 0.8217 0.8165 0.8155
0.0725 8.2906 4850 0.7871 0.8165 0.8217 0.8165 0.8163
0.0725 8.3761 4900 0.7848 0.8175 0.8223 0.8175 0.8171
0.0725 8.4615 4950 0.7835 0.8156 0.8203 0.8156 0.8149
0.0504 8.5470 5000 0.7833 0.8156 0.8202 0.8156 0.8150

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
21
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nzm97/math_question_grade_detection_v12-15-24_v2

Finetuned
(62)
this model